Explosive decompression on climb, Report on the accident to BAC One-Eleven, G-BJRT over Didcot, Oxfordshire on 10 June 1990

Micro-summary: This BAC One-Eleven experienced a loss of the captain's window, a decompression, and the captain being sucked partially out.

Event Date: 1990-06-10 at 0733 UTC

Investigative Body: Aircraft Accident Investigation Board (AAIB), United Kingdom

Investigative Body's Web Site: http://www.aaib.dft.gov.uk/

Note: Reprinted by kind permission of the AAIB.

Cautions:

1. Accident reports can be and sometimes are revised. Be sure to consult the investigative agency for the latest version before basing anything significant on content (e.g., thesis, research, etc).

2. Readers are advised that each report is a glimpse of events at specific points in time. While broad themes permeate the causal events leading up to crashes, and we can learn from those, the specific regulatory and technological environments can and do change. Your company's flight operations manual is the final authority as to the safe operation of your aircraft!

3. Reports may or may not represent reality. Many many non-scientific factors go into an investigation, including the magnitude of the event, the experience of the investigator, the political climate, relationship with the regulatory authority, technological and recovery capabilities, etc. It is recommended that the reader review all reports analytically. Even a "bad" report can be a very useful launching point for learning.

4. Contact us before reproducing or redistributing a report from this anthology. Individual countries have very differing views on copyright! We can advise you on the steps to follow.
BAC One-Eleven, G-BJRT: Main document

Aircraft Accident Report No. 1/92 - (EW/C1165)

Report on the accident to BAC One-Eleven, G-BJRT over Didcot, Oxfordshire on 10 June 1990

Contents

• Synopsis

• Factual Information

  • 1.1 History of the flight

  • 1.2 Injuries to persons

  • 1.3 Damage to aircraft

  • 1.4 Other damage

  • 1.5 Personnel information

  • 1.6 Aircraft information

  • 1.7 Meteorological information

  • 1.8 Aids to navigation

  • 1.9 Communications

  • 1.10 Aerodrome information

  • 1.11 Flight recorders

  • 1.12 Wreckage and impact information

  • 1.13 Medical and pathological information

  • 1.14 Fire

  • 1.15 Survival aspects

  • 1.16 Tests and research

  • 1.17 Additional information
1.18 New investigation techniques

2. Analysis

2.1 General

2.2 Engineering Factors

2.3 ATC Emergency Procedures

3. Conclusions

3(a) Findings

3(b) Causal Factors

4. Safety recommendations

5. Appendices

Appendix A - ATC Transcript

Appendix B - Layout of Birmingham Airport

Appendix C - Shift Patterns

- C1

- C2

Appendix D - Product Sample Check List

Appendix E - Comparison of bolt heads in countersinks

Appendix F - Report by the Behavioural Psychologist

Registered Owner and Operator: British Airways Plc

Aircraft: Type: BAC One-Eleven

Aircraft Model: Series 528FL

Nationality: British

Registration: G-BJRT

Place of accident: Over Didcot, Oxfordshire

Latitude: 54° 34' North
Longitude: 0010 10' West

Date and Time: 10 June 1990 at 0733 hrs
All times in this report are UTC

Synopsis

The accident was notified by Southampton Airport Air Traffic Control to the Department of Transport on Sunday 10 June 1990 and the Air Accidents Investigation Branch (AAIB) began an investigation the same day. The following participated in the investigation:

Mr D F King, Principal Inspector of Air Accidents (Engineering)
Mr R St J Whidborne, Senior Inspector of Air Accidents (Operations)
Mr S R Culling, Senior Inspector of Air Accidents (Engineering)
Mr R J Vance, Senior Inspector of Air Accidents (Flight Recorders)

The investigation was assisted by:

Mr I J Weston, Air Traffic Control (ATC) Investigations, Safety Regulation Group, Civil Aviation Authority (CAA)
Dr A J F MacMillan, Royal Air Force (RAF) - Rapid Decompression
Mr R Green, Aviation Medicine - Human Factors

The accident happened when the aircraft was climbing through 17,300 feet on departure from Birmingham International Airport en route for Malaga, Spain. The left windscreen, which had been replaced prior to the flight, was blown out under effects of the cabin pressure when it overcame the retention of the securing bolts, 84 of which, out of a total of 90, were of smaller than specified diameter. The commander was sucked halfway out of the windscreen aperture and was restrained by cabin crew whilst the co-pilot flew the aircraft to a safe landing at Southampton Airport.

The following factors contributed to the loss of the windscreen:-

A safety critical task, not identified as a 'Vital Point', was undertaken by one individual who also carried total responsibility for the quality achieved and the installation was not tested until the aircraft was airborne on a passenger carrying flight.

The Shift Maintenance Manager's potential to achieve quality in the windscreen fitting process was eroded by his inadequate care, poor trade practices, failure to adhere to company standards and use of unsuitable equipment, which were judged symptomatic of a longer term failure by him to observe the promulgated procedures.
The British Airways local management, Product Samples and Quality Audits had not detected the existence of inadequate standards employed by the Shift Maintenance Manager because they did not monitor directly the working practices of Shift Maintenance Managers.

Eight Safety Recommendations were made during the course of the investigation.

1 Factual Information

1.1 History of the flight

The accident occurred during a scheduled flight (BA 5390) from Birmingham to Malaga, Spain. With 81 passengers, four cabin crew and two flight crew the aircraft took off from Birmingham International Airport at 0720 hrs and, having been transferred by ATC to the Daventry and then the Bristol Sector Controller of London Air Traffic Control Centre (LATCC), was cleared to Flight Level (FL) 140. A number of radar headings were ordered until the flight was instructed to maintain a radar heading of 1950M and cleared for a further climb to FL 230. The co-pilot had been the handling pilot during the take-off and, once established in the climb, the commander was handling the aircraft in accordance with the operator's normal operating procedures. At this stage both pilots had released their shoulder harness, using the release bar on the buckle, and the commander had loosened his lap-strap.

At 0733 hrs as the cabin staff prepared to serve a meal and drinks, and, as the aircraft was climbing through about 17,300 feet pressure altitude, there was a loud bang and the fuselage filled with condensation mist. It was at once apparent to the cabin crew that an explosive decompression had occurred. The commander had been partially sucked out of his windscreen aperture and the flight deck door had been blown onto the flight deck where it lay across the radio and navigation console. The No 3 steward, who had been working on the cabin side of the door, rushed onto the flight deck and grasped the commander round his waist to hold onto him. The purser meanwhile removed the debris of the door and stowed it in the forward toilet. The other two cabin staff instructed the passengers to fasten their seat belts, reassured them and took up their emergency positions.

The co-pilot immediately attempted to control the aircraft and, once he had regained control, initiated a rapid descent to FL 110. He re-engaged the autopilot which had become disconnected by displacement of the control column during the commander's partial egress and made a distress call on the frequency in use but he was unable to hear its acknowledgment due to the noise of rushing air on the flight deck. There was some delay in establishing two-way communications and consequently the Bristol Sector Controller was not immediately aware of the nature of the emergency. This led indirectly to the LATCC Watch Supervisor not advising the aircraft operator of the incident, as required by the Manual of Air Traffic Services (MATS) part 1. Consequently the initiation of the British Airways Emergency Procedure Information Centre plan was delayed. Meanwhile the purser re-entered the flight deck and, having hooked his arm through the seat belts of the fourth crew member jump seat which was located behind the left-hand pilot's seat, was able to assist the No 3 steward in the restraint of the commander.

The two men tried to pull the commander back within the airframe, although they could see his head and torso through the left Direct Vision (DV) window, the effect of the slipstream frustrated their efforts. The No 2 steward entered the flight deck and he was able to relieve the No 3 steward whose arms were losing their strength as they suffered from frostbite and bruising from the windscreen frame. The No 2 steward grasped the commander's right leg, which was stuck between the cockpit coaming and the control column whilst his left leg was wedged against his seat
cushion. The steward then strapped himself into the left jump seat and was able to grasp both of the commander's legs but not before he had moved a further 6 to 8 inches out of the window frame. He held him by the ankles until after the aircraft had landed.

Meanwhile, the aircraft had descended to FL100 and slowed to about 150 knots (kt). The co-pilot had requested radar vectors to the nearest airport and had been turned towards Southampton Airport and eventually transferred to their approach frequency. Having verified that there was sufficient runway length available for landing, the co-pilot manoeuvred the aircraft onto a visual final approach to runway 02 and completed a successful landing and stop on the runway at 0755 hrs. The engines were shut down but the Auxiliary Power Unit, which the co-pilot had started up during the descent, was left running to provide electrical power to certain aircraft systems. As soon as the aircraft came to a halt, passengers were disembarked from the front and rear airstairs while the airport and local fire services recovered the commander back into the aircraft from his position half out of the window frame, where he had remained throughout the descent and landing. He was taken to Southampton General Hospital suffering from bone fractures in his right arm and wrist, a broken left thumb, bruising, frostbite and shock. The other crew members and passengers were medically examined but apart from one steward who had cuts and bruising to his arm there were no other injuries.

1.2 Injuries to persons

<table>
<thead>
<tr>
<th>Injuries</th>
<th>Crew</th>
<th>Passengers</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serious</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minor/none</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1.3 Damage to aircraft

The pilot's windscreen was missing and one securing bolt was found in the window frame, this had retained a portion of the rubber seal and a metal bush from the windscreen. The bolt was not new and its countersunk head had pulled through the windscreen. The aircraft window frame was checked for distortion and found to be satisfactory.

Other damage to the aircraft consisted of:-

The High Frequency (HF) aerial, stretching from a forward position on the top of the fuselage to a fitting close to the tailplane bullet, was missing and the fittings damaged. There was a dent on the top left side of the fuselage approximately 3 inches long about 3 feet above the overwing emergency exit and a scratch on the top left side of the fuselage. Minor damage to several items on the flight deck.

1.4 Other damage

There was no other damage.
1.5 Personnel information

1.5.1 Commander

Male, aged 42 years

Licence

Airline Transport Pilot's Licence
valid until 13 November 1999

Instrument rating
valid until 16 January 1991

Route check
valid until 30 September 1990

Safety procedures
last check 23 October 1989

Medical
last examination 14 March 1990 Class One no limitations

Height: 1.67 metres. Weight: 70 kg

Flying experience

Total 11,050 hours

On type 1,075 hours

Last 28 days 19 hours

Last 90 days 96 hours

1.5.2 Co-pilot

Male, aged 39 years

Licence

Airline Transport Pilot's Licence
valid until 24 June 1991

Instrument rating
valid until 19 November 1990

Route check
valid until 8 July 1990

Safety procedures
last check 9 October 1989

Medical
last examination 20 December 1989, Class One, no limitation

Flying experience

Total 7,500 hours

On type 1,100
Last 28 days  58 hours
Last 90 days  169 hours

1.5.3  Cabin crew

Purser  Male, aged 37 years
No 2  Male, aged 29 years
No 3  Male, aged 36 years
No 4  Female, aged 33 years

All Safety and Emergency procedure checks had been completed in the current year.

1.6  Aircraft information

1.6.1  General information

Manufacturer  British Aircraft Corporation (BAC) Ltd
Type  BAC One-Eleven Series 528FL
Registration  G-BJRT
Serial number  BAC 234
Date of manufacture  1977
Registered owner  British Airways Plc
Total airframe hours  37,724.07 hours
Certificate of Airworthiness  Transport Category (Passenger) expires 16 March 1992
Hours to next check  41 hours

1.6.2  Aircraft weights and centre of gravity

Maximum Take-off Weight Authorised  44,000 kg
Dry Operating Weight  25,818 kg
Zero Fuel Weight  32,925
Payload  7,197 kg
Take-off fuel  9,980 kg
Actual Take-off weight  42,905 kg
Maximum landing weight 39,460 kg

Actual landing weight (1) 40,725 kg

Note: 1 Fuel state on landing at Southampton was 7,800 kg, therefore fuel used during the flight was 2,180 kg.

1.6.3 General description

The BAC One-Eleven 500 series is a twin-engined, passenger aircraft powered by Rolls Royce Spey turbofans. The fuselage is pressurised and air-conditioned; 8,000 feet conditions being obtainable at 35,000 feet, under which conditions the pressure differential is 7.5 psi.

The pilots’ windscreens are of five-ply glass/polyvinyl-butyl construction, the innermost (glass) laminate being low-tempered to form a splinter shield in the event of a bird strike. Windscreen heating is applied, primarily to improve the impact resistance of the windscreen at low outside air temperatures. The windscreen is not designed on the ‘plug’ principal, where cabin pressure effectively contributes to holding it in place, but is fitted from the outside of the aircraft and is secured by means of 90 countersunk bolts, also fitted from the outside. The large number of bolts are required to prevent leakage of pressurised air through the window seal but the force of internal air pressure could be satisfactorily resisted by far fewer bolts.

1.7 Meteorological information

1.7.1 Synoptic situation

High pressure existed to the west of Ireland with a light northerly flow over the Didcot area. There was a possibility of broken Stratus with a base at 600 feet and scattered Altocumulus with base at 12,000 feet and tops at 15,000 feet with a thin layer of Cirrus above 25,000 feet. Visibility was about 10 kilometres. At 18,000 feet the wind was 360° at 17 kt and the air temperature was minus 17°C. The freezing level was at 9,000 feet.

1.7.2 Actual conditions at Southampton

The 0720 hrs observation at Southampton Airport included the following:

Wind: 350°/12 kt. Visibility: - 8,000 metres in haze. Temperature: - plus 15°C.

1.8 Aids to navigation

Not relevant

1.9 Communications

1.9.1 ATC assistance
At the time of the accident the flight was receiving an Air Traffic Area Radar Control Service from the Bristol sector of LATCC on a frequency of 132.80 MHz. The flight came under the control of Southampton Zone on frequency 131.00 MHz at 0744 hrs. A transcript of ATC recorded transmissions from the onset of the emergency is reproduced at Appendix A.

The co-pilot made a 'Mayday' call and declared that the aircraft had suffered an emergency depressurisation and was descending to FL100 on a heading of 195°M. The controller acknowledged receipt of the 'Mayday' call from BA 5390 but did not attempt to establish if the aircraft could still receive his communications, although he alerted his Chief Sector Controller (CSC), took no further action since he was waiting for further information about the emergency. He continued to operate the sector as if no emergency existed, accepting further aircraft onto the frequency with no attempt to off-load traffic or minimise radiotelephony activity. However, fortunately there was no conflicting traffic and the CSC had advised the neighbouring sectors of the emergency descent and told the LATCC watch supervisor and the RAF Distress and Diversion Cell about the emergency call. Just prior to the handover to Southampton, BA 5390 was descended to an altitude of 4,000 feet in error rather than FM0 as had been co-ordinated, despite the Bristol Sector Controller not being aware of the airfield's QNH. This difficulty was resolved when the flight was transferred to the Southampton Zone Controller who had been alerted to the possibility of the aircraft landing there and had taken alerting action following a telephone call from LATCC.

The co-pilot did not select the special purpose Secondary Surveillance Radar transponder code (7700) to indicate an emergency condition but retained the code that had been already allocated to the flight. This accords with the United Kingdom Aeronautical Information Publication RAC 7-4 which states: '....if the aircraft is already transmitting a code and receiving an air traffic service that code will normally be retained.'

1.9.2 ATC handling of emergencies

Guidance to controllers on the handling of emergency traffic is contained in the MATS Part 1 paragraph 5.1.7 which states:

'Emergency aircraft - Selection of controlling agency

On receipt of information which indicates that an aircraft is in an emergency, the controller must decide whether or not to transfer the aircraft to another agency. The choice of agency will depend upon the circumstances and no hard and fast rules apply. The following guidance material will help controllers to make this decision:

Retaining Control

If the controller can offer immediate assistance the aircraft should normally be retained on the frequency. If necessary impose a radio silence on other aircraft or transfer them to another frequency.

Alternatively it may be more expedient to transfer the emergency aircraft to a discrete frequency, particularly if a radio silence would endanger other traffic.

The aircraft will have to be retained on the original frequency if it is unreasonable to ask the pilot, or if he is not prepared, to change frequency. The controller may be able to relay instructions and information from other units to the pilot.'
Transferring Control

If a controller considers that another unit may be able to give more assistance than he can himself, and in the circumstances it is reasonable to ask the pilot to change frequency, he shall either:

(a) Consult the Air Traffic Control Centre Supervisor and transfer the aircraft according to his instructions, or

(b) Alert the nearest suitable unit and transfer the aircraft to a common frequency, giving assistance to that unit as required.

Before transferring aircraft, controllers should obtain sufficient information from the pilot to be convinced that the aircraft will receive more assistance from another unit. If a change of frequency is desirable, the pilot must be instructed to revert immediately if there is no reply on the new frequency. Controllers should then listen out on the original frequency until the aircraft is known to be in two-way communication.

1.9.3 ATC training

An ATC service in the United Kingdom may be provided only by a person who holds an Air Traffic Controller's licence with the appropriate rating made valid at the ATC unit at which the service is to be provided. The Air Navigation Order authorises the grant of licences to persons who demonstrate their knowledge, experience, competence, skill and physical and mental fitness to the satisfaction of the CAA. The CAA publication CAP 160 details the evidence which must be furnished, the examinations which must be passed and other requirements which must be met before licences, ratings, validations and endorsements are issued.

An applicant for a licence is required to demonstrate his or her knowledge and skill by passing examinations at two levels:

a. Rating. The ability to provide a particular type of ATC service (e.g., aerodrome control, area control or area radar control).

b. Validity of a Rating. The ability to provide an ATC service at a particular place. This includes the ability to operate equipment (e.g., radar) when it is used to provide the service.

The Bristol Sector Controller had completed an approved course and examination for the issue of an Area Procedural and Area Radar rating at the National Air Traffic Services (NATS) College of Air Traffic Control (CATC) in May 1985 and was then posted to LATCC for validity training. This was successfully completed and led to the rating being validated on the Bristol Sector position.

Prior to the mid 1980's the Area Radar rating examination had included an emergency exercise. Both the CATC and the ATC Licensing Branch informally agreed that the inclusion of an aircraft emergency during the examination placed undue emphasis on the emergency and worked against assessing the examinee's ability to handle routine traffic situations. In order to overcome this problem, an agreement was reached between the College and ATC Licensing Branch that the emergency would be removed from the examination but that appropriate training for such events would continue to be given. The Bristol Sector Controller on duty at the time of the emergency had undertaken his course in 1985 but the precise content of his course could not be established as the records of courses conducted at that time were not available.
This situation is believed to have continued until 1988 when the ATC Licensing Branch was removed from NATS and placed within the CAA Safety Regulation Group, eventually becoming part of the Air Traffic Services Standards Department (ATSSD). Due in part to that change, the CATC, which remained within NATS, was required to submit to annual inspections by the ATSSD so that approved courses might continue. In contrast to other ATC courses which have a published syllabus (CAP 390 - ATC Training Manual) no such publication is made for Area Procedural/Area Radar Courses. As the CATC was the only establishment to provide such courses, individuals syllabuses were agreed between ATS SD and the College. No mention of practical emergency training is given in this syllabus for area radar nor in the course approval which was given after the ATSSD inspection in 1989. The syllabus did require certain parts of MATS Part 1 relating to emergency training to be covered, but instructors took a wider view and also tended to discuss the handling of emergency situations during theoretical lessons. The instructors however, found it more difficult to incorporate emergency situations into routine practical exercises as they found it was likely to disrupt the learning process. Such training tended to be injected at a relatively early stage of the course with little opportunity for later consolidation. Therefore, the course manager was allowed to omit certain emergency situations. As a consequence, training in practical emergencies could be reduced to such an extent that it was non-effective. As the syllabus did not require practical emergency instruction, the CATC management did not inform ATSSD where such training was not given. ATSSD was not aware that such decisions had been taken and believed the situation remained as per the agreement following the removal of emergencies from the examination. Once a student leaves the College there appears to be no requirement to undergo any emergency training or periodic appraisal on emergency procedures in order to maintain an Area/Area Radar validated rating.

1.10 Aerodrome information

The single concrete runway, 02/20, at Southampton Airport is 1,723 metres long. The landing distance available on runway 02 is 1,650 metres. A VOR/DME (SAM 113.35 MHz) is located on the airfield which is at an elevation of 44 feet above mean sea level.

1.11 Flight recorders

1.11.1 Cockpit Voice Recorder (CVR)

A Fairchild Model A100 four channel CVR was fitted and a satisfactory replay of the 30 minute audio record was obtained. Channel allocation was

Channel 1  Cabin Address
Channel 2  Co-pilot's hot microphone
Channel 3  Pilot's hot microphone
Channel 4  Cockpit area microphone

The rapid decompression caused no discernible change to the signal on the area microphone channel but it was clearly audible on both crew hot microphone channels.

1.11.2 Universal Flight Data Recorder (UFDR)
A Sundstrand UFDR was fitted. A satisfactory replay was obtained from the following recorded parameters:- Indicated Airspeed, Altitude, Heading, Normal acceleration, Flap position, Pitch attitude, Roll attitude, No 1 engine P7, No 2 engine P7, VHF transmit discrete.

Recorded data showed the aircraft climbing at 300 kt Indicated Airspeed (IAS) through 17,300 feet at the time of the loss of the windscreen. As the control column was pushed forwards, probably due to the movement of the commander through the windscreen frame, the aircraft pitched 60 nose down and banked 250 to the right. When the co-pilot took control and closed both throttles, the speed was allowed to increase to 340 kt as the aircraft descended at 4,600 feet per minute to FL110. On reaching this level the speed was reduced to 266 kt with a further decrease to 163 kt as flaps were extended according to the normal operating schedule and then power was applied to maintain this height and speed. The time elapsed from the depressurisation to level flight at FL110 was 148 seconds.

1.12 Wreckage and impact information

The aircraft was brought to rest on the runway and electrical power turned off. The aircraft was towed off the runway and parked.

1.12.1 Examination of the left windscreen and attaching bolts

The windscreen was found near Cholsey, Oxfordshire, along with the windscreen outboard corner post fairing strip and some associated bolts.

Of the 90 bolts used to attach the windscreen to the aircraft, 11 had remained in the windscreen and 18 were found loose nearby; one had remained in the aircraft window frame.

Twenty-six of the bolts recovered with the windscreen were new bolts identified against the British Standard as having the part number A211-8C. The remaining four bolts recovered were re-used bolts identified as having the part number A211-7D. The Illustrated Parts Catalogue (IPC) specifies that the attaching bolts should be part number A211-8D. The specifications for these bolts are:-

<table>
<thead>
<tr>
<th>Part No</th>
<th>Shank length (inches)</th>
<th>Diameter (inches)</th>
<th>Thread Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A211-8D</td>
<td>0.8</td>
<td>0.1865-0.1895</td>
<td>10 UNF</td>
</tr>
<tr>
<td>A211-8C</td>
<td>0.8</td>
<td>0.1605-0.1639</td>
<td>8 UNC</td>
</tr>
<tr>
<td>A211-7D</td>
<td>0.7</td>
<td>0.1865-0.1895</td>
<td>10 UNF</td>
</tr>
</tbody>
</table>

UNF = Unified Fine
UNC = Unified Coarse

The bolts engage with 10 UNF Kaylock floating anchor nuts mounted on the inside of the windscreen frame. The replacement windscreen had been installed with 84 bolts (A211-8C) whose diameters were approximately 0.026 of an inch below the diameters of the specified bolts but of the same thread pitch, and six bolts (A211-7D) which were of the correct diameter, but 0.1 of an inch too short.

The left windscreen had been changed during the night shift of the 8/9th June 1990 and the accident flight was the first since that installation. Eighty of the bolts which had attached the old windscreen
were recovered from the work area during the investigation, and 78 of these were identified as A211-7D, the remaining two being A211-8D. The old windscreen, which had been fitted four years earlier, before the aircraft had been acquired by British Airways, had therefore been primarily attached by bolts which were 0.1 of an inch shorter than those specified.

1.13 Medical and pathological information

Not relevant.

1.14 Fire

There was no fire.

1.15 Survival aspects

Following the loss of the left windscreen and subsequent decompression of the fuselage, the commander found himself half way out of the aircraft through his windscreen aperture. He recalls the impression of lying on his back against the upper surface of the flight deck exterior and, realising that he was still able to breathe, he concentrated on this until he assumes he lost consciousness. Heregained consciousness after the aircraft had landed and when he was being recovered by fire and ambulance staff inside the flight deck prior to being placed on a stretcher and taken to hospital.

The co-pilot and the crew members who were holding on to the commander had individually reached the conclusion that his survival was highly improbable in the extreme conditions to which he was exposed. They were considerably reassured when, at a late stage in the descent at about 3,000 feet, the commander started to kick his legs.

The aircraft was not fitted with an automatic presentation oxygen system in the cabin and this was not required to be fitted under the original requirements for the issue of the aircraft's Certificate of Airworthiness. Therapeutic oxygen was available in the cabin and consisted of 18 sets of facemasks and four portable oxygencylinders. The oxygen system supplied gaseous oxygen to the crew and passengers if decompression occurred and for therapeutic purposes. Oxygen cylinders were mounted underfloor in the forward fuselage in the electrics bay. From the cylinders the oxygen was piped through in-line filters to the control panel in the flight deck right hand console. For therapeutic supply, an outlet from the double pressure regulator connected to an isolation valve (normally closed) and thence to a ring main which served twinflow sockets in selected passenger service panels. With the crew shut off valve and passenger isolation valve open, oxygen was obtained by connecting a therapeutic mask to an outlet point. Therapeutic masks were stowed in the aft stowage compartment. Immediately following the loss of pressurisation, on the No 2 steward went and sat in seat 20D whilst donning the mask of a portable set that was stowed nearby. Oxygen masks were available to the flight deck crew but the co-pilot elected not to don his mask since he realised that the aircraft would soon reach FL100 (see paragraph 1.17.7 below). He also did not want to impede his ability to communicate with the other crew members who were holding on to the commander.

1.16 Tests and research

1.16.1 Trials of 8 UNC and 10 UNF countersunk head bolts with 10 UNF anchor nuts
During the course of the investigation British Airways carried out a simulation of the window fitting procedure to determine the torque that could be applied to 8 UNC countersunk head bolts fitting into 10 UNF Kaylock type anchor nuts. A 24 anchor nut test piece was used as follows:

To determine the torque at thread slip of twenty 8 UNC bolts in 10 UNF Kaylock nuts. This was found to be in the range of 1 to 7 lbf in.

To determine the torque required to engage the bolt in the locking mechanism of the nut, four 10 UNF bolts were fitted in 10 UNF Kaylock nuts. This torque was found to be in the range of 10 to 11 lbf in.

A further, more representative test was carried out in the presence of AAIB using a BAC One-Eleven in which 32 bolts (A21 1-8C) were used to fasten a window and seal in an aircraft. In this test, torque figures ranging between 0 and 12 lbf in were achieved before the threads slipped.

A third test was carried out using some of the anchor nuts removed from G-BJRT to ensure that no unforeseen effect could have made the G-BJRT window unrepresentative; ten 8 UNC bolts were fitted and these slipped at torques ranging from 0 to 6 lbf in.

The combined results using 8 UNC bolts in 10 UNF Kaylock nuts showed a maximum torque of 12 lbf in and an average of 4.7 lbf in at thread slip.

It was noted that the thread range 4 UNC to 1/2 inch UNF, commonly used on aircraft bolts, contains three adjacent pairs of sizes with similar thread pitches which allow the smaller bolt to engage in the larger Kaylock nut.

1.16.2 Examination of the torque limiting screwdriver used to fit the windscreen

Tests on a similar torque limiting screwdriver to that used to fit the windscreen showed that at a low setting (5 lbf in) the feel of the screwdriver clutch slipping was indistinguishable from the feel of an 8 UNC thread slipping in a 10 UNF anchor nut. At a higher setting (15 lbf in) a more pronounced click was felt as the screwdriver clutch released.

The actual torque limiting screwdriver used had a high level of residual friction (typically 7 lbf in at a setting of 20 lbf in) after the set value had been achieved and was therefore taken to the manufacturer for examination in the presence of AAIB and British Airways. The torque limiting screwdriver employed a cam plate with three lobes to retain three ball bearings which were displaced against the action of a spring to release at the set torque. Once released, the drive shaft carrying the ball bearings rotated through a third of a revolution until the balls reindexed against the cam. Thus, in use, the torque should build up to the set value, slip and reduce to a residual value whilst the balls move across the constant radius section of the cam to the next indexing position.

The residual torque was confirmed as being high at a value of approximately 30 per cent of the torque set, rather than the usual value of between 5 and 10 per cent. Subsequent discussions with the manufacturer disclosed that the specification for the grease, used in the assembly of the torque limiting screwdriver, had been changed approximately five years ago because of problems of the grease breaking down with age. At this time retrospective action for those torque drivers already sold was considered impractical because of the large numbers involved and the lack of information about their location. The screwdriver under test was at least five years old and strip examination revealed that the excessive friction was caused by deterioration of the old
specification grease. No significant wear was evident on the cam or the ballbearings, and when rebuilt with the correct grease the torquelimiting screwdriver performed satisfactorily.

The high residual torque occurred after the set value had been achieved (ie 20 lbf in) and did not affect the torque at which the screwdriver operated. The residual torque would not have been felt before the set torque was reached.

1.16.3 Special checks called for on windscreen bolts after the accident

Before the diameter of the replacement bolts had been established British Airways issued an instruction to be carried out on all its BAC One-Elevens before the next flight, to remove every fourth bolt from the No 1 left-hand and No 1 right-hand windscreens to check for correct length.

Throughout the British Airways fleet of BAC One-Elevens two aircraft failed the check, having a total of 41 short bolts (A211-7Ds).

A similar check was carried out on the four BAC One-Elevens belonging to another airline and two aircraft failed the check, having a total of 107 short bolts.

When the smaller diameter bolts were identified in the detached window British Airways called for a 100 per cent visual inspection of bolt head diameter; this check utilised the fact that the smaller bolt head had 27 per cent less area than the head of the correct bolt. All the aircraft passed the check.

1.17 Additional information

1.17.1 Certification of Airworthiness of Aircraft

1.17.1.1 Type Certification of the BAC One-Eleven

The BAC One-Eleven Model 500 was type certificated to British Civil Airworthiness Requirements (BCAR) Section D in 1970 which calls up duplicate inspections after certain safety critical maintenance operations. However the glazing elements of windscreens are not identified as principal structural elements, nor does the application of this duplicate inspection philosophy attempt to cover possible safety critical situations caused by servicing errors.

There are no airworthiness requirements for aircraft windows to be fitted from the inside (plug type).

The BAC One-Eleven windscreen was designed to be secured with countersunk head bolts to British Standard A211-8D. This British Standard specifies that the British Standard number and the bolt part number shall not be applied on the bolts, but shall be clearly marked on the labels of parcels of bolts.

1.17.1.2 Aircraft Maintenance Requirements

a. Duplicate Inspections

BCARs require a duplicate inspection of all control Systems in an aircraft to be made after initial assembly and before the first flight after overhaul, repair, replacement, modification or
adjustment. In September 1985 BCARs introduced a requirement for duplicate inspections of 'Vital Points', which are defined as any point on an aircraft at which a single mal-assembly could lead to catastrophe, i.e. result in loss of the aircraft and/or fatalities. The CAA state that the term 'Vital Point' is not intended to refer to multiple fastened parts of the structure, but only applies to a single point, usually in a control system.

The regulations contain a waiver making the definition of 'Vital Points' nonmandatory for aircraft with a Maximum Take-off Weight Authorised of over 5,700 kg which were manufactured in accordance with a Type Certificate issued prior to 1st January 1986. This waiver includes the BAC One-Eleven. However, even had it not, British Aerospace would not expect the pilots' windscreens to appear in a 'Vital Point' analysis of the BAC One-Eleven.

b. Cabin Pressure Checks

There are no CAA requirements for a cabin pressure check to be called up after work has been carried out on the pressure hull. There is no specific company policy on leak checks within British Aerospace. Such checks are written into the aircraft Maintenance Manual at the discretion of the aircraft design team, and were not called up on the BAC One-Eleven.

1.17.1.3 Quality Requirements for Airlines

CAA approval of Aeroplane Maintenance Organisations, such as British Airways, includes a requirement for a company exposition containing details of the systems and procedures for the control of matters, including Quality Control, directly affecting continuing airworthiness. The systems established for Quality Control and Quality Assurance should be such that the prime objective is to maintain a continuous check on the effectiveness of the maintenance organisation and the procedures and systems employed to ensure that all CAA requirements as well as those of the Organisation itself are met.

When assessing an Organisation for approval the CAA will examine the systems used to control all maintenance activities, including Quality Control and Assurance. The certification procedures used by many airlines, including British Airways, and approved by the CAA, allow a single authorised engineer to undertake most aircraft work within his trade boundaries, and sign for it, without supervision or independent checking. The exception to this, on the BAC One-Eleven, is the requirement for duplicate inspection of control systems.

1.17.1.4 Maintenance Engineer Licensing

Aircraft maintenance licences are issued for a period of two years and renewed for a maximum period of five years. Licences will normally be renewed on application provided that, during the 24 months preceding the date of expiry of the licence, the holder has been engaged for periods totalling at least six months on appropriate work. No medical standards are specified for issue or renewal, neither are any examinations associated with the renewal of licences. No periodic training or tests are required on individual maintenance engineers.

The CAA issue aircraft maintenance engineer's licences in several categories, of which category 'A' applies to aeroplanes. Generally there are two parts to each category:

a. Licence Without Type Rating (LWTR)
The LWTR does not in itself confer any certification responsibilities or privileges but is a prerequisite for the granting of the relevant Type Ratings which confer the privileges of certification appropriate to that Type Rating. The LWTR is also a prerequisite for issuing an approved company authorisation in the appropriate licence category.

b. Type Ratings

Type Ratings confer on the holder of a licence privileges and certification responsibilities in respect of certain aircraft registered in the United Kingdom.

1.17.1.5 Company Authorisations

Certain aircraft types may be maintained only by organisations which are specifically approved by the CAA for that purpose - BCAR chapter A8-13 refers. Licence Type Ratings are not granted for these types. In accordance with the procedures associated with this CAA approval the organisation may grant authorisation to persons to issue Certificates of Release to Service for specific aircraft types to suitable engineers who hold a LWTR.

The organisation can also issue such authorisations to cover aircraft types for which a Licence Type Rating is available. British Airways is such an approved company and the fitting of the windscreen and its certification were in accordance with these procedures.

The holding of company authorisations allows the engineer to make maintenance certifications affecting the airworthiness of the aircraft. Therefore, such an engineer carries some of the responsibility for the day-to-day airworthiness of the aircraft.

1.17.1.6 Maintenance Manuals

The CAA requires the BAC One-Eleven to be serviced in accordance with the BAC Maintenance Manual, which contains chapters covering each system in the aircraft, each chapter providing: a detailed description of the system and its operation, with sufficient detail for diagnostic use by the aircraft maintenance engineers; specific values to be achieved during servicing, i.e. torque loadings, pressures, dimensional checks, timings, etc; procedural information containing detailed sequences of the steps to be followed during the removal and replacement of significant items. The Maintenance Manual is complemented by the IPC, which contains detailed drawings of all parts of the aircraft and identifies the components used by manufacturers' part numbers.

Although the Maintenance Manual breaks the windscreen removal/replacement task into a series of individual steps, the British Airways maintenance documentation at that time treated the task as a single stage operation.

1.17.2 British Airways' infrastructure

Paragraphs 1.17.2.1 to 1.17.2.3 contain extracts from a much longer internal British Airways document.

1.17.2.1 Quality Monitoring Procedure (QMP) - The System

British Airways policy is that quality cannot be policed into a product. The QMP system, which was introduced in 1987, was developed actively to pursue a policy of encouraging staff to wear the
mantle of Quality Assurance' as they went about their work tasks. QMP forms the structure on which all of the monitoring activity is based and has three main components, these are: The Local Exposition; Continuous Monitoring; and Product Sampling.

a. The local Exposition

Each Departmental Head is required to raise a local Exposition which lists the functions for which he or she is responsible and the geographic locations where the work is carried out. The functions are allocated to managers, by name, and the procedures that are used to control tools, equipment, procedural and documentary amendments, modifications, special processes, etc. are defined. Each local Exposition is registered with the CAA and, in conjunction with other documents, forms the British Airways' submission for requesting approval for the various engineering functions that are carried out.

b. Continuous Monitoring

The second requisite is the availability of a reporting system through which all staff can register deficiencies as they occur (by raising a Quality Monitoring Deficiency Report (QMDR)), this is a 'closed loop' system which informs the originator of the action that has been taken to rectify the problem. This is known as Continuous Monitoring.

The QMP system is confined to airworthiness related items and does not duplicate other reporting systems. It can, however, report the shortcomings in other Systems where this is appropriate in airworthiness terms.

The role of the individual is crucial to the success of the QMP system. The QMP system gives each person the responsibility of reporting deficiencies in the quality of the services and procedures which are provided to them and on which they depend in order to produce their goods or services at the proper level of quality. By so doing, they are given a formal device for influencing their working environment.

c. Product Sampling

In addition to the Continuous Monitoring process there is an imposed Product Sample that has to be carried out at set periods to satisfy the requirement of an independent assessment of work. Product Sampling is seen as a check on the effectiveness of the Continuous Monitoring system and all sample reports are submitted to the Chief Quality Engineer for evaluation; some of which are passed on to the CAA in support of their approval of British Airways' maintenance arrangements.

1.17.2.2 The Management Role in QMP

The Departmental Head is responsible for his organisation's quality performance, for assessing standards and for maintaining a quality awareness in all his staff. Through the Local Exposition, the Departmental Head declares the staff, facilities, equipment and systems for which he is responsible and sets down how Quality Monitoring is to be implemented throughout his area of responsibility. He holds regular briefings to ensure that Continuous Monitoring is being correctly applied, and monthly summary reports of the QMP system are submitted to him by his staff. From this monthly summary it is possible to deduce the amount of QMP activity, in terms of numbers of deficiencies raised by Continuous Monitoring and by Product Sampling.
Every quarter the Departmental Head summarises all of the QMP activity for his area by completing a Quarterly Report. The Quarterly Report is sent to the British Airways Audit Unit who compile statistics from the reports and report those statistics to the Quality Forum. Forum meetings are arranged monthly and are chaired by the Chief Engineer of Quality and Training Services on behalf of the Engineering Director. The CAA Surveyors in charge of both the Heathrow and Gatwick offices participate in these meetings.

The Quality Forum ensures that Departmental Heads are accountable for the QMP process and provides the opportunity for quality objectives and performance to be discussed and acted upon.

1.17.2.3 Auditing the Process

The effectiveness of the QMP is assessed although independent audits which are conducted by a small group of quality engineers from the Quality Audit Unit, a paperwork exercise every six months and a visit every two years. In addition they will act in an advisory capacity on airworthiness matters and on the management of the QMP system. The independence of the Audit Unit from the engineering operation has been accepted by the CAA, who check on this aspect through regular surveys on the Audit Group.

The Audit Unit is also empowered to carry out traditional 'systems audits' if sufficient grounds exist to suspect that functions or procedures are not properly controlled. The results of such audits are reported to the appropriate Departmental Head so that the necessary corrective action can be taken. As a last resort, the result can also be reported to the Quality Forum, for corrective action to be allocated.

1.17.2.4 The Maintenance Control Programme (MCP)

British Airways is approved by the CAA as a maintenance organisation; as part of that approval, the MCP has been developed. This is a closed-loop system which is continuously reviewed by engineering management to ensure that aircraft technical performance is satisfactory. As part of the programme, the following performance parameters are measured and monitored:

- Aircraft technical delays
- Aircraft systems performance
- Engine in-flight shutdowns
- Unscheduled component removals
- Repetitive defects
- Air/Ground incident reports.

These parameters are analysed, and where appropriate have defined targets or alert levels. All of these parameters are evaluated and reported on for all fleets and corrective action taken through a series of structured MCP committees, which in turn report to an Engineering Control Review Board who meets formally twice per year to review the effectiveness of the MCP.

1.17.2.5 Ground Occurrence Report Form E1022
Ground Occurrence Report Form E1022 is used for the notification of defects found during work on aircraft or aircraft components which are considered worthy of special attention. The system is also used for the notification of 'Ground Found' Mandatory Occurrence Reports as required by the Air Navigation Order and Regulations and to highlight any technical or other matter which, if unreported, could lead to a potential airworthiness hazard.

All British Airways' Engineering staff are required to take E1022 action when encountering deficiencies of the type listed below, unless the subject of an Air Safety Report:-

- Failure, potential failure or obstruction of any aircraft system
- Defects in aircraft structure such as cracks in primary or secondary structure, structural corrosion or deformation greater than expected
- Failures or damage likely to weaken attachments of major structural items including flying controls, landing gear, power plants, windows, doors, galleys, seats and heavy items of equipment
- When any component part of the aircraft is missing, believed to have become detached in flight
- Overheating of primary or secondary structure
- Unreported damage
- Defects that cannot be cured by normal replacements or repairs
- The correct assembly
- Use of incorrect fuel, oil or other vital fluids
- Failure of any emergency equipment that would prevent or seriously impair its use
- Critical failures or malfunction of equipment used to test aircraft systems or aircraft units
- Actual/potential fires
- Items rejected ex-stores and low life failures
- Lack of clarity or conflict between technical procedures
- Spillages in aircraft
- Any defects found as a result of a Special Mandatory Inspection or Check
- Any other occurrence or defect considered to require such notification.

1.17.3 British Airways' Organisation at Birmingham

1.17.3.1 Task
The task includes flight servicing, scheduled maintenance and rectification of the 13 BAC One-Eleven fleet, and flight servicing and rectification for other British Airways aircraft (HS 748 and ATP) and other contracting airlines. The first batch of the British Airways One-Eleven fleet depart between 0630 hrs and 0730 hrs each weekday morning.

For operational reasons most of the maintenance work on the BAC One-Eleven fleet was carried out at night and consequently the Shift Maintenance Managers on the night shift usually had more work available to them than they could satisfy. This required the allocation of task priorities and the night shift manpower was usually sufficient to complete all the necessary airworthiness engineering tasks with only minor Acceptable Deferred Defects being left to be dealt with by a subsequent night shift. Indeed, in order to curb over-enthusiasm engendered by the pride felt by the shifts in their ability to satisfy the task, the management at Birmingham repeatedly stressed that night shifts should not attempt to do more than was prudent.

1.17.3.2 Facilities

At the time of the accident Birmingham Airport was undergoing extensive works services to increase its capacity. The British Airways engineering facilities comprised accommodation at two locations:

a. Under the International Pier

Office accommodation plus an unmanned store with an adjacent small workshop area which contained a carousel with 408 drawers holding consumable Aircraft General Spares (AGS).

b. Eastern Apron

A hangar bay large enough to contain a BAC One-Eleven, with a tail dock containing staging allowing access to the tail. The Eastern Apron used to be the terminal area and the bay contained accommodation previously used by the engineering department. This facility housed a manned store and engineering accommodation suitable for work in the area.

The geographical location of these areas is shown at Appendix B.

1.17.3.3 Manpower

The engineering establishment comprised

a. An Area Maintenance Manager with responsibilities for outstations in Mid/South England; these included Birmingham, Jersey, Southampton, Cardiff, East Midlands and Bristol Airports. However Southampton, Cardiff, East Midlands and Bristol were not served by British Airways scheduled operations, although British Airways charter flights may have landed there occasionally. British Airways had no engineering staff at these stations which were served as necessary by agencies, appointed by the Area Maintenance Manager, or visiting engineers for specific flights. Jersey was a transit station with, at most, one aircraft stopping overnight. Therefore more than 80 per cent of the Area Maintenance Managers time and attention was devoted to Birmingham. He was specifically responsible for the control and effectiveness of the Quality Monitoring system in maintaining the established quality performance targets and was to conduct regular checks throughout the organisation assigned to him to ensure that quality performance targets were achieved.
b. A Station Maintenance Manager of foreman grade, who acted as deputy to the Area Maintenance Manager.

c. Five rotating shifts, comprising a Shift Maintenance Manager of foreman grade and approximately six engineers and a storekeeper.

d. A permanent night shift of four engineers to supplement the duty night shift and three double-day shifts of three men to augment day work.

These figures are establishments, manning levels on shifts maybe depleted by leave, sickness, etc.

1.17.3.4 Station Organisation

The Station Maintenance Manager and the Shift Maintenance Managers all reported directly to the Area Maintenance Manager. The only Terms of Reference that were available for the engineering maintenance personnel employed by British Airways at Birmingham were those which appeared in their Union agreement, however their job specifications may have appeared in recruitment advertisements issued locally.

a. Shifts

The shift pattern worked by the five rotating shifts gave 24-hour cover over a 35 day cycle. The duty shift was augmented by the various standing shifts in a system designed to provide optimum cover at the times when it is needed, primarily for aircraft handling during the day and rectification at night. Reduced cover was provided over the weekends. A diagrammatic representation of the shift system is shown at Appendix C.

b. Workload

The workload for all levels of management at Birmingham was high; the Area Manager did not monitor the day-to-day work practices of his subordinates, but relied on the trending of parameters such as numbers of Acceptable Deferred Defects, repeated defects, and failures to meet schedules as indicators of quality. (The total list of parameters is at 1.17.3.6 b).

Although the Station Maintenance Manager was responsible for the technical activities on the Unit, he was the same grade as, and received the same pay as, the Shift Maintenance Managers under him. He worked on aircraft when the need arose and so was closer to the day-to-day standards used, however the organisation structure was such that Shift Maintenance Managers often communicated directly with the Area Maintenance Manager. Because of his day time duties, the Station Maintenance Manager rarely had the opportunity to observe the workings of shifts at night, especially during the early hours of the morning.

1.17.3.5 Stores procedures

The stores computer based Total Inventory Management for Engineering (TIME) system employed by British Airways is such that an item whose part number has been identified can be located down to the drawer containing the stock. All parts and materials are requested by description and part number as specified in the IPC which is available at all work stations.
AGS are contained within a dispenser with a stores identification label and issue may either be over the counter, or self service. This method used to dispense AGS is common throughout airlines. At Birmingham three carousels were employed, two in the hangar under the control of a storeman, integrated in the TIME system, and labelled with drawer location codes, and one, uncontrolled, under the International Pier with drawers labelled with part numbers.

AGS generally arrived in transparent plastic packs of 100 items, the packs containing a label or a computer produced description and bar code; the drawers frequently contained the identifying labels from the packs. There was, however, no way, other than measurement, of identifying the contents after they had been removed from the packs.

Minimum stock levels per drawer were usually set at between 50 and 100 items depending on bulk and usage. The hangar carousels contained drawers with stock levels well below the resupply level; no instances were found of incorrect contents in the hangar carousels. The uncontrolled carousel, on the other hand, had some drawers which were not labelled and some which contained a mixture of items. The 408 drawers in this carousel were categorised as follows:

- No label, no contents: 46
- No label, contained stock: 25
- Labelled, no contents: 68
- Labelled, contained stock: 269

The last category was further broken down showing that:

- In 251 drawers the majority of the contents were as the label, (163 drawers contained solely the contents described on the drawer label).

- In 18 drawers the majority of the stock was wrongly labelled, (in 9 drawers none of the contents were as described on the drawer label).

The uncontrolled nature of this carousel had been recognised by some British Airways personnel, who had reported the problem informally. There was no record of this problem in the QMDRs at Birmingham, a system specifically designed to receive reports of this nature.

1.17.3.6 Quality Assurance Practice Training

The initial training for QMP consisted of 1.1/2 days of external training for middle management who provided ad hoc training to foremen and supervisors in the local area, based on a standard package consisting of a video plus viewfoils. The foremen in turn were required to train the subordinate grades.

Continuation training in QMP was carried out as and when required. The Audit Team, through sampling of QMP awareness across the Company in June 1988, identified a shortfall; the Quality Forum directed each Department to carry out QMP training, and an illustrated 'Guide to QMP' was produced. A further QMP survey in January 1989 identified that improvements had been achieved but that a lack of comprehension still existed. At the time of the accident, action to remedy this was still under discussion.
b. The Birmingham Exposition

Product Samples were required from Birmingham on a monthly basis and prior to each aircraft Certificate of Airworthiness renewal. They were carried out by the Station Maintenance Manager and an nominated Shift Maintenance Manager. The quality monitoring schedule for the Product Sample is at Appendix D.

The completed Product Sample proforma were distributed to the Area Maintenance Manager, the British Airways Quality Forum and some to the CAA.

A British Airways Engineering Department procedure stated that the Area Maintenance Managers were responsible for maintaining the established quality targets with respect to the following:-

Technical Despatch Reliability

Acceptable Deferred Defect levels

Repetitive Defects

Air Safety Reports

Significant Technical Defects sent for investigation E1022's)

Product Samples

QMDRs

Quality Audit Reports

Technical Log entries.

c. Continuous Monitoring Reports from Birmingham

British Airways literature circulated amongst engineering staff stressed the need for an open reporting system using QMDRs. Over a 39 month period, ending in April 1990, 36 QMDRs were raised on local issues at Birmingham. Eleven of these were as a result of the monthly Product Samples, and the other 25 were raised by the British Airways employees, of whom approximately a quarter had been active in the system. The Area Maintenance Manager stated that there was less of a need to complete QMDRs as some faults could be identified and actioned immediately as he had control of the Birmingham engineering budget.

d. Product Samples from Birmingham

British Airways produced ten copies of Product Samples carried out at Birmingham, seven of these related to the period before the accident and were carried out during work packages involving Acceptable Deferred Defect Clearance, Base Checks and Modifications, and Ramp Checks. The seven pre-accident product samples raised a total of 65 deficiencies which were of a minor nature.
The CAA produced six copies of Product Samples carried out at Birmingham before the accident; three of these duplicated copies provided by British Airways, and the additional three, from early 1989, were similar in content to the others.

e. British Airways Quality Audit at Birmingham

Paperwork audits of the Engineering function at Birmingham to assess the use of and adherence to monitoring procedures, required under QMP procedures, were scheduled and performed at six monthly intervals. A physical audit of the Birmingham station, in the form of a two day visit, was last carried out prior to the accident by a representative of the British Airways Quality Audit Unit on 15/16 June 1988, when it was reported that the engineering facility was to a high standard. Seven observations were raised relating to minor, non-aircraft, matters.

f. CAA Supervisory Visit to British Airways Engineering at Birmingham

One of the duties of the CAA's Flight Operations Inspectorate (FOI 7) was (at the time of the accident) to carry out supervisory visits to survey the engineering services provided by British Airways at Birmingham in support of their Air Operator's Certificate. The last FOI 7 visit, an 'Air Operator's Certificate: Supervision of Operator's Line Maintenance Station', before the accident took place on 22 June 1989, followed a proforma schedule, lasted for approximately half a day and did not detect any significant engineering problems.

1.17.3.7 Use of E1022 Procedure at Birmingham

Over the same 39 month period in which 36 QMDRs were raised, 365 E1O22s were raised at Birmingham.

1.17.4 Fitting the windscreen

1.17.4.1 History of the shift

The Shift Maintenance Manager arrived at work in the offices under the International Pier 45 minutes earlier than his shift start time in order to allow himself time to catch up with the paperwork and establish the shift work content; this included three significant defects, routine items and various minor cabin defects.

A Supervisory Aircraft Engineer and a further Licenced Aircraft Engineer, normally part of the shift, were not available that night and, although the work outstanding remained the same, the Friday night shift was routinely not supported by the four man night shift supplement because there was reduced scheduled flying on Saturday and Sunday. The shift consisted of:-

The Shift Maintenance Manager

1 Licenced Aircraft Engineer

1 unlicenced engineer airframe/engines

1 Supervisory Aircraft Engineer (Avionics)
Avionics engineer.

The engineers were directed to their tasks whilst the Shift Maintenance Manager carried on with the administration and the task of entering the contents of the aircraft technical logs into the computer. At about midnight, the Shift Maintenance Manager spent some time with the Licenced Aircraft Engineer on a steering defect and the completion of this coincided with the arrival of a Tunisair Boeing 737 which the shift had to handle. As none of the engineers had Boeing 737 experience the Shift Maintenance Manager carried out the pre-departure inspection and the refuelling in conjunction with the Licenced Aircraft Engineer to give him experience. All this activity took place at various locations around the airfield and was co-ordinated using radio.

The departure of the Tunisair Boeing 737 at around 0145 hrs coincided with the meal break, which the Shift Maintenance Manager spent working on administration whilst he ate his sandwiches. After the break he directed his two airframe engineers onto a galley water leak on one of the BAC One-Eleven aircraft which needed rectifying before the aircraft departed the following morning.

Although there was no operational requirement for G-BJRT the next day, the Shift Maintenance Manager knew that the oncoming morning shift were also depleted and that an aircraft wash had been booked using overtime, at 0630 hrs the following morning. Whilst no external pressure had been put on him, he was aware that the previous week the wash team had been brought in on a similar basis and not used. In order to achieve the windscreen change during his shift and have the aircraft ready for the wash team, he decided to carry out the windscreen change himself.

The aircraft was located in the No 2 bay, off the Eastern Apron on the other side of the airfield, and was parked tail into the hangar with the nose by the doors. In retrospect the Shift Maintenance Manager could not recall exactly what the weather was, but thought that it was raining; in which case he would have closed the doors, leaving a few feet between the nose of the aircraft and the doors. The windscreen change was carried out between approximately 0300 hrs and 0500 hrs on the Saturday morning.

1.17.4.2 Procedures used

British Airways statistics show that 12 No 1 windscreens, left or right, had been changed on their BAC One-Eleven aircraft over the last year, and a similar number the year before. The Shift Maintenance Manager had carried out about six windscreen changes on BAC One-Eleven aircraft whilst employed by British Airways.

Maintenance Manual

The Shift Maintenance Manager glanced briefly at the Maintenance Manual as he had not changed a windscreen for about two years and wanted to refresh his memory. This check confirmed his impression that it was a straightforward job with no apparent difficulties.

b. IPC

The IPC was available on a microfiche reader, but was not used to identify the part number of the bolts to be replaced, consequently a stock check, using TIME, to assess the availability and location of replacement bolts was not carried out. The Shift Maintenance Manager justified this omission by saying that he was quite satisfied that the bolts that he had removed were the correct
The page of the IPC for the 528 series aircraft shows a sketch of the pilot's No 1 windscreen and the adjacent DV window, but only illustrates one bolt - that in the DV window, which is an A211-7D. The components for the pilot's No 1 window are listed in the text, along with several alternative modification states, and its bolts are defined as ‘attaching parts’ and are identified as A211-8Ds. The IPC for the 510 series, in contrast, is very clear in identifying the correct bolts.

The bolts actually fitted to the defective windscreen were, in the main, A211-7Ds, the bolts illustrated as applicable to the DV window. That is bolts of the correct diameter but 0.1 of an inch shorter than those specified.

c. Bolt selection

The Shift Maintenance Manager removed the windscreen with the aid of the Avionics Supervisor, who also disconnected the electrical connectors of the screen heaters. The bolts were 'on condition' items, and as some of the paint-filled bolt heads had been damaged during removal, and others showed signs of corrosion, the Shift Maintenance Manager decided to replace them and took one of the bolts to the store to identify it by comparison with those held in the carousel. The carousels were under the control of a storeman and had drawers which were clearly labelled with a location code to which engineers were directed, after entering the part number into the adjacent stores computer terminal.

Because of their small head size the bolts do not carry individual identification, but the Shift Maintenance Manager accurately matched the removed bolt by going through several trays, and comparing the removed bolt with the drawer contents. He then identified the part number of the bolt as A211-7D by looking at the stores issue note in the drawer (the windscreen should have been fitted using A211-8Ds). The Stores Supervisor, who had been in the job for about 16 years, informed him that A211-8Ds were used to fit that windscreen, but did not press the point. The Shift Maintenance Manager decided that as A211-7D bolts had come out, he would replace them with bolts of the same size.

The minimum stock level in the carousel for A211-7D bolts was 50, but there were only four or five bolts in the drawer (when checked by the AAIB the following Monday it contained four). The Shift Maintenance Manager drove to the unsupervised carousel underneath the International Pier, taking the removed bolt with him. The drawers in this carousel were labelled with the part number of the contents, although the labels were old and faded. The ambient illumination in this area was poor and the Shift Maintenance Manager had to interpose himself between the carousel and the light source to gain access to the relevant carousel drawers. He did not use the drawer labels, even though he now knew the part number of the removed bolt, but identified what he thought were identical bolts by placing the bolts together and comparing them. He also picked up six A211-9Ds, thinking that the attachment of the outboard corner post fairing strip would need longer bolts.

The old seal was found to be serviceable, so the new windscreen, which weighed 60 pounds, was manoeuvred into position and the electrical connections made.

d. Torque loading of the bolts
The aircraft manual calls for a torque of 15 lbf in to be applied to the bolts, which are then retorqued to 5 lbf in after 100 flying hours. The Shift Maintenance Manager's experience told him that many of the bolts would be found up to three turns loose during the retorque procedure, so he decided to increase the initial torque to 20 lbf in.

The British Airways toolstore at Birmingham held a calibrated dial indicating torque wrench to cover the range of 5 to 120 lbf in, but the retorque requirement of 5 lbf in was at the bottom of the range and the dial indicating torque wrench was not considered suitable for this task. Two calibrated torque checking gauges were available at Birmingham to allow engineers to confirm the wrench accuracy.

The calibrated dial-indicating torque wrench was not available on the toolboard that night, but the Stores Supervisor had recently acquired from British Airways at London, on his own initiative, a torque limiting screwdriver specifically for the windscreen task, but on receipt it was found to be out of calibration date and it was therefore not cleared for use. It was not the company policy at Birmingham to allow the engineers to adjust torque wrenches and when required, but rather to have the wrenches adjusted in a standards room and then issued for use at that specific setting. It was therefore the intention of the Stores Supervisor to have it set in the London standards room before issue, but, in the absence of any suitable alternative, the storeman set this screwdriver to the figure of 20 lbf in requested and gave it to the Shift Maintenance Manager, who checked the setting using both torque checking gauges.

The Shift Maintenance Manager used a 1/4 inch bi-hexagonal socket to hold the No 2 Phillips screwdriver bit onto the speed brace used to run the screws down into the countersinks. The socket did not have any means, such as a spring clip, to retain the screwdriver bit, consequently the Shift Maintenance Manager found that during the two-handed operation of using the speed brace the bit fell out several times and he had to descend from the safety raiser (mobile staging) and retrieve it from the floor. To overcome this problem when using the same V4 inch bi-hexagonal socket with the torque limiting screwdriver, he held the screwdriver in his righthand and used his left hand to hold the bit in the socket. Additionally, to reach most of the bolts with both hands from the safety raiser, he had to stretch across the nose of the aircraft, outside the safety rail provided by the safety raiser. This situation was exacerbated by the fact that the safety raiser was incorrectly positioned alongside the aircraft. His left hand obscured his view of the bolt head, and the need to stretch removed the operation from his direct vision.

He fitted the windscreen using 84 of the bolts collected from the International Pier carousel and obtained a similar feel from the torque limiting screwdriver for each one; a feel that met his expectations. When he came to the outboard corner post fairing strip he realised that the A211-9D bolts were too long, descended from the staging and retrieved and refitted the six old bolts that he had removed with the fairing.

The new bolts that he had fitted were in fact A211-8C bolts - one size down in diameter but with the same thread pitch as those specified and within 0.050 of an inch in length to the A211-7D bolts removed from the window. The bolts engage in 10 UNF 'Kaylock' floating anchor nuts; the self locking action is the result of part of the nut being an elliptical shape prior to the insertion of the bolt. Some of the anchor nuts were attached directly to the inside of the aircraft window frame and some were carried on strips, themselves attached to the window frame. The outboard corner post fairing strip interposed an additional thickness and required A211-8D bolts, and these were specified for the attachment of the whole windscreen, even though in the majority of locations approximately five threads would be visible below an anchor nut fastened directly to the frame when used with an
A211-8D bolt. The amount of thread in safety would be reduced when used with the backing strips and the outboard corner post fairing.

e. Missed cues

The safety raiser used by the Shift Maintenance Manager did not give easy access across to the centreline of the aircraft, and he had to stretch over the aircraft nose to accomplish the task. Due to the inadequate access to the job and the obscuring effect of his left hand, the Shift Maintenance Manager was not in a position to observe that the bolt thread was slipping in the anchor nut thread, instead of the torque limiting screwdriver allowing its shaft to remain stationary while the handle rotated. However, the bit and socket would have continued to rotate in his lefthand.

The window was finished in primer and had countersunk holes for the bolts; an A211-8C bolt head sits significantly further below the surface of the window, down in the countersink, than does an A211-8D bolt head, leaving an annulus of unfilled countersink which is easily discernible when viewed under good conditions. This excessive annulus of unfilled countersink was not seen.

When the bolts were being fitted to the windscreen centre column, the bolts from the right hand window, the heads of which filled the countersinks, were close to those of the left hand window, and, although painted, the difference is perceptible under normal circumstances. The Shift Maintenance Manager missed this difference in depth of the bolt heads in the windscreen centre column. (See photograph in Appendix E).

When fitting the outside corner post fairing with the six bolts previously removed from it, the Shift Maintenance Manager failed to notice the difference in torque achieved or the difference in countersink fit of the bolt heads between the old and new bolts.

The following night the Shift Maintenance Manager carried out another windscreen change, this time a right hand one. The job had been set up before he arrived and he noticed that the bolts were A211-8Ds. He recalled fitting A211-7D bolts the previous night, but he rationalised that the aircraft were old and of differing modification states and the previous night he had an aircraft modification standard requiring A211-7D bolts and that night he had an aircraft requiring A211-8D bolts.

f. Documentation

The documentation used to report and clear the defect stated:-

<table>
<thead>
<tr>
<th>DEFECT SYMPTOM</th>
<th>ACTION TAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM Port Windscreen</td>
<td></td>
</tr>
<tr>
<td>During cruise darkening &amp; bubbling noted in small</td>
<td>Windscreen replaced. A&gt;S&gt;R&gt; Actioned F/Check satis</td>
</tr>
<tr>
<td>area on bottom LH port windscreen. Q.R.H. drill</td>
<td></td>
</tr>
<tr>
<td>carried out</td>
<td></td>
</tr>
</tbody>
</table>

Signed by Reporting Captain

Signed by engineer (subject to the following
THE WORK RECORDED ABOVE HAS BEEN CARRIED OUT IN ACCORDANCE WITH THE REQUIREMENTS OF THE AIR NAVIGATION ORDER FOR THE TIME BEING IN FORCE AND IN THAT RESPECT THE AIRCRAFT/EQUIPMENT IS CONSIDERED FIT FOR RELEASE TO SERVICE

Note:


A.S.R Air Safety Report, raised by the captain. The Shift Maintenance Managers action was to clear the defect

F/Check Functional check of the windscreen heating system.

1.17.5 Prevalent attitudes

During the course of the investigation a number of visits to the operator's engineering facility at Birmingham were made, the Shift Maintenance Manager who changed the windscreen was interviewed and informal interviews conducted with the other maintenance managers in order to provide a context for the actions of the engineer who undertook the windscreen replacement task. Subsequently these managers provided written signed statements, mostly concerned with the range of issues raised at the interviews.

The overriding impression given by the Maintenance Managers was that morale was high and that they were proud of their record in meeting the task and of the way that they went about it.

The Shift Maintenance Managers did not criticise the shift system, however the potential problems associated with sleep deprivation and circadian effects were acknowledged and various strategies were cited to cope with the situation.

During the initial part of the investigation the Shift Maintenance Manager who carried out the windscreen fit did not appear to grasp the lack of care that his actions implied. He co-operated fully in the investigation and, when shown the full list of errors and omissions that he had made, offered an explanation for each individual action.

The Area Manager was aware of the pressures to produce aircraft that the Shift Maintenance Managers worked under, and continually stressed that there were other objectives besides maximising the work throughput on the shifts.

Four of the six Maintenance Managers who subsequently gave written statements raised the issue of the large numbers of E1022 forms originated at Birmingham and concluded that these indicated their concern for quality and general standards.

One Maintenance Manager stated that he felt that the QMP system was in its infancy at the time of the accident but that the E1022 process was well known. He went on to say that the staff at Birmingham felt more comfortable with the E1022 system because they knew exactly how it worked and they knew that they would get a response.
Another Maintenance Manager also concluded that when he returned damaged parts through the E1022 system he had direct contact with the development engineer by telephone and his requests were actioned without them being channelled through a third party. The E1022 system was therefore more effective, the QMPs took longer to action and were, in his opinion, clearly for non-urgent quality lapses.

1.17.6 Human factors

1.17.6.1 Personal details

The person who fitted the windscreen was a Shift Maintenance Manager holding authorisations on BAC One-Eleven, Boeing 737, Boeing 757, HS 748 and with transit authorisations on L-1011 Tristar, Boeing 747 and a CAA licence holder for airframe and engines on the Viscount. His experience included 10 years in the RAF, followed by 23 years with British Airways. He appeared to be a mature, dedicated engineer who was well respected by flightcrew and engineers alike. No domestic or financial distractions were identified, either by British Airways management, the Behavioural Psychologist engaged by the AAIB who interviewed him or the AAIB Inspectors; the Shift Maintenance Manager denied any such problems.

He had been on leave over the period of the last night shift carried out by his shift and so the Friday/Saturday night shift during which the windscreen was fitted was his first night work for approximately five weeks. He had had a normal nights sleep the previous night and had gone to bed at about 1730 hrs, and had slept for 1.1/2 hours, getting up at 2030 hrs. He said that he would have been happier if he had slept for an hour longer, but wasn't dismayed that he had not. The last shift worked by the Shift Maintenance Manager was on Tuesday 5 June from 0630 hrs to 1500 hrs.

The Shift Maintenance Manager made limited use of a fairly weak prescription for reading glasses, but did not habitually use them at work and was not wearing them when making the bolt selection.

His record with British Airways has been reported as exemplary and he had received commendations during this period.

1.17.6.2 Behavioural Psychologist's Report

A Behavioural Psychologist interviewed the Shift Maintenance Manager who carried out the windscreen fitting task and was present during AAIB interviews with him and informal interviews with the other Maintenance Managers. His report is included at Appendix F.

1.17.6.3 Ophthalmologist's Report

The Shift Maintenance Manager was examined by a consultant in ophthalmology who concluded that his eyes were normal with full central fields and normal ocular muscle balance. He had full stereoscopic vision and his intra-ocular pressures were normal. However he was presbyopic and for this he needed glasses for close work, and his own half-eye reading glasses were perfectly adequate for his needs.

If he were to read small print or figures without his reading glasses, he would have difficulty. With his reading glasses and in good lighting, he would have no problems.

1.17.6.4 Relationship between Serious Accidents and Near Misses
Two analyses of groups of accidents and incidents occurring in industrial situations have shown that for every serious accident there can be between 400 to 600 near misses. These figures indicate that, in an industrial context, degraded standards may exist for some time before a serious accident occurs or the situation becomes apparent to an independent observer.

The experience of accidents involving aircraft maintenance shows that an accident usually occurs as a result of a series of errors, and that the probability of the accident occurring is low compared with the probabilities of the individual failures in the chain of events leading to it. The incorrect installation of the windscreen resulted from a sequence of contributory events (para 1.17.4.2), any one of which, if identified and eliminated from the chain could have prevented the windscreen loss.

1.17.7 The effects of rapid decompression

In an attempt to analyse and quantify the dynamic forces and physiological effects caused by the loss of the windscreen, all the available data was presented to the Aircrew Systems Division of the RAF Institute of Aviation Medicine, RAE, Farnborough.

The conclusions drawn suggested that the critical factors affecting the survivability of all the aircraft occupants were the time of decompression and the final cabin altitude. Those affecting the commander were the time of decompression and the final altitude of exposure, together with the low temperature and the aerodynamic forces to which he was exposed during the remainder of the flight.

Calculation provided that the duration of the decompression was likely to have been in the region of 1.13 to 1.46 seconds, and this was supported by the duration of the rapid changes of aircraft attitude. The maximum cabin altitude, achieved during this time period, depended upon the interaction between the ram effect of the outside airflow and the airflow provided by the internal pressurisation systems. Analysis suggested that this was unlikely to have been greater than 13,000 to 13,500 feet which, when followed by the descent profile flown, would not have promoted sufficient hypoxia to impair either the passengers or the crew.

The forces acting upon the commander, to project him through the windscreen aperture, were a function of the differential pressure between the inside and outside of the cabin and are calculated as having a force of approximately 5,357 pounds (depending upon his exact proximity to the aperture). This would be quite adequate to drive a person weighing 70 kg from his seat and through the aperture, whereafter the ram effect of the airstream would pin him to the fuselage and seriously impair movement.

1.18 New investigation techniques

None.

2 Analysis

2.1 General

The crew were faced with an instantaneous and unforeseen emergency. The combined actions of the co-pilot and cabin crew successfully averted what could have been a major catastrophe. The fact
that all those on board the aircraft survived is a tribute to their quick thinking and perseverance in the face of a shocking experience.

Up to the time of the loss of the windscreen, the flight had proceeded uneventfully and in accordance with the company's normal procedures. It was quite in order for the flight crew to release their shoulder harnesses once they were established in the climb and, for reasons of comfort, the commander loosened his lap strap as he neared the cruising phase of the two and a half hour flight to Malaga. Therefore, when the left windscreen was blown out, it was not surprising that the commander, who was very lightly built, was drawn partially through the windscreen aperture. It is not certain what prevented his complete egress from the aircraft but, since the No 2 steward later had to free his legs from a position between the control column and the flight deck coaming, it is likely that he had been restrained by his legs during the initial stage of the emergency. Later, he was restrained simply by the efforts of the No 2 steward who was holding on to both of his legs.

The co-pilot immediately took control of the aircraft and was able to establish a rapid descent despite the disorientating effects of the dramatically transformed cockpit environment coupled with a push over and right roll. It was fortunate that he was an experienced pilot with more than 1,000 hours experience of flying the BAC One-Eleven aircraft. Thus he was able to handle the aircraft on his own and complete the normal operating procedures from memory without the assistance of another pilot. He alone was faced with a double emergency, namely rapid decompression and incapacitation of the handling pilot. He rejected the idea of donning his oxygen mask in favour of being able to shout instructions to his cabin crew. In the event, this was probably sensible but if the depressurisation had occurred at a greater height, say above 20,000 feet, it would have been imperative for him to don the oxygen mask to avoid incapacitation to the extent that he could not fly the aircraft.

2.2 Engineering Factors

2.2.1 The selection and use of the wrong bolts

The windscreen was lost because it had been secured by bolts, the vast majority of which were of an incorrect diameter. The windscreen fitting process was characterised by a series of poor work practices, poor judgements and perceptual errors, each one of which eroded the factors of safety built into the method of operation promulgated by British Airways:-

a. During the fitment of the windscreen to G-BJRT the Shift Maintenance Manager was confronted with certain situations which made his job more difficult

Incorrect bolts, A211-7D had been used in the previous installation

Insufficient stock of A211-7D bolts, incorrect but demonstrably adequate, existed in the carousel in the bay stores at the Eastern Apron.

Nevertheless, problems of this type are not unusual and cannot be used to explain the subsequent chain of events which led to the loss of the windscreen.

b. A number of procedures were ignored and some poor trade practices followed:-

The IPC, available to identify the required bolts' part number was not used
The stores TIME system, available to identify the stock level and location of the required bolts, was not used.

Physical matching of old and new bolts by touch and eye was attempted, leading to a mismatch with bolts from the International Pier carousel.

Arbitrary choice of A211-1-9Ds to fit through the corner fairing took place.

An increase in bolt torque over that stated in the Maintenance Manual was used.

c. Non conformity with British Airways standards was also demonstrated:

An uncontrolled torque limiting screwdriver was set up outside the Calibration Room.

d. Use of unsuitable equipment took place:

A bi-hexagonal bit holder was used leading to occasional loss of the bit and covering of the bolt head during the torquing process.

A Safety Raiser which provided inadequate access to the job was used.

e. A number of cues were either ignored or missed:

The warning from the Storekeeper that A211-8D bolts were required did not influence the choice of bolts.

The amount of unfilled countersink left by the small bolt head was not recognised as excessive.

The increased amount of unfilled countersink with the new bolts, compared to the flush fitting of adjacent, correctly sized bolt heads in the windscreen centre column, went unnoticed.

The difference in torque and the amount of countersink remaining unfilled between the new bolts and old bolts used in the corner fairing went unnoticed.

The use of, as he thought, A211-7Ds when using A211-8Ds the next night was not questioned.

The difference between the bolt thread stripping in/through the nut and the torque limiting screwdriver 'breaking' was not recognised even though the bi-hexagonal socket and screwdriver bit, located by his left hand, were still rotating. However, the high residual torque of the particular screwdriver resulted in a less positive 'break' and, although the break torque was never achieved with the 8 UNC bolts, it was when setting the screwdriver and when installing the fairing. This screwdriver, on reaching the set torque, may have felt more like the thread stripping than would done with a more 'snappy' break.

2.2.2 The windscreen replacement task

The windscreen is part of the aircraft's pressurised hull and is attached from the outside by 90 bolts. It may be the only critical item on the aircraft that was susceptible to failure through the chain of circumstances listed above, in that:-

[Please note that the rest of the text is not provided in the image.]
a. Its replacement required the renewal of the majority of the bolts in the judgement of the Shift Maintenance Manager.

b. The wrong diameter bolts engaged with the anchor nuts, and had the same thread pitch.

c. The bolts were not special to type items needing a part number to identify and obtain replacements, but were general use items, obtainable from an uncontrolled carousel.

d. The windscreen was not designed on the plug principle such that internal air pressure would hold it in place, but was fitted from the outside.

e. The windscreen replacement was not designated a 'Vital Point' task, therefore no duplicate inspection was required.

f. The Shift Maintenance Manager was the only person whose work on the night shift was not subject to the review of a maintenance manager.

The windscreen may therefore have been unique in that it alone, of all the critical components, could have accommodated the errors which occurred during its fitment, to expose them so dramatically the first time that the windscreen was called upon to resist cabin pressure. Had it been any other item, the selection of the wrong bolts may have been unmistakably apparent during the fitting process, or the subsequent failure may not have been so obvious or traumatic.

2.2.3 Relevant British Airways' Procedures

2.2.3.1 AGS dispensing

The use of unsupervised dispensers for aircraft general spares is a recognised and necessary part of aircraft engineering practice. Small units can rarely afford to keep a full-time storekeeper to administer a dispenser, or even a store, and good trade practice has to be relied upon. Before the Shift Maintenance Manager went to the unmanned carousel he knew the part number of the bolts he was seeking, and although they were too short, similar bolts had held the old windscreen in place for four years. Despite the poor segregation, labelling and lighting, the selection of the wrong bolts cannot be explained by the carousel system.

2.2.3.2 Work by Shift Maintenance Managers

During the course of his duties the Shift Maintenance Manager reviewed the work of his shift, this review augmented the self-certification task required of the engineers by British Airways' maintenance policy. Once he had decided to carry out rectification work himself, he withdrew from the active supervision of the rest of the shift. The task of the windscreen installation was not designated a 'Vital Point' and consequently no duplicate inspection was called for and none took place, nor was the work of the Shift Maintenance Manager subject to review by another manager.

Thus the Shift Maintenance Manager had no backstop with any chance of detecting his errors. Errors that were made more likely by the sleep deprivation and circadian effects associated with the end of a first night shift.

2.2.4 Quality Assurance
2.2.4.1 Application of Self Certification to Aircraft Engineering

The adoption of self certification systems within manufacturing industry has typically resulted in savings, mainly arising through reduction in scrap and in the achievement of higher manufacturing efficiency. Nevertheless, at the end of the production line the product is normally still tested, before being despatched. Some aircraft maintenance tasks which may be undertaken using self certification procedures do not allow for the testing of the end product before it is flown.

It could be argued that the concept of self certification suffers from the drawback that the expectations of the engineer are such that he is unlikely to detect an error of his own making; the application of self certification reduces the level of inspection and supervision.

It is recommended that the applicability of self certification to aircraft engineering safety critical tasks following which the components or systems are cleared for service without functional checks, should be reviewed by the CAA. Such a review should include the interpretation of 'single mal-assembly' within the context of 'Vital Points' and the requirements which include a waiver making the definition of 'Vital Points' non-mandatory for aircraft with a Maximum Take-Off Weight Authorised of over 5,700 kg which were manufactured in accordance with a Type Certificate issued prior to 1 January 1986.

2.2.4.2 Feedback

A fundamental requirement of any management process is a feedback loop to detect the success or failure of the system, and two types of feedback are available - a formal feedback through auditing/monitoring activities and an informal feedback through free discussion amongst engineers discussing their work problems in an open forum.

Some feedback was generated by the monitoring of a series of performance parameters which were airline parameters with quality overtones rather than parameters capable of giving a comprehensive picture of the engineering quality built into tasks. The crucial element missing was direct assessment of the standards used by the Shift Maintenance Managers to perform their tasks.

Whilst literature circulated by British Airways stressed the need for open reporting through QMDRs, a number of the Maintenance Managers indicated that they felt more comfortable with the E1022, Ground Occurrence Report Form, with which they were particularly familiar, finding it a more direct and responsive reporting system. The findings at Birmingham are consistent with the British Airways Audit Team sampling of QMP awareness in 1988 and a further QMP survey in 1989 which identified that a lack of comprehension still existed. At the time of the accident action to remedy this was still under discussion within British Airways.

The E1022 system was well established and understood when QMP was introduced three years before the accident. The statements of the Birmingham Maintenance Managers indicate that at least some of them still prefer, and may use, the E1022 system in instances when a QMDR might be more appropriate. The list of circumstances under which an E1022 is to be used appears to overlap into procedural areas which might be thought of as the domain of the QMP system.

Some evidence of a quality problem within the British Airways engineering unit at Birmingham is provided by the failure of the unit to use the Continuous Monitoring system to report some of the problems seen during investigation of the windscreen fitment:
The poor labelling and segregation of parts in the uncontrolled carousel under the International Pier

Inadequate access available to certain areas of the aircraft from the work platform

Inadequate tools to achieve some specific torque loading

Windscreen attachment bolts found loose at the 100 hour re-torque.

It is recommended that British Airways review their Quality Assurance system and the relative roles of EO22s and QMDRs be clarified and that they continue to educate and encourage their engineers to provide feedback from the shop floor.

At the time of the accident a physical audit of the Birmingham base was about due according to the QMP schedule. The British Airways Quality Audit Unit had last visited Birmingham two years before the accident over a two day period and were satisfied with the engineering standards.

It is recommended that British Airways should review the Product Sample procedure with a view to achieving an independent assessment of standards and conduct an in-depth audit into the work practices at Birmingham.

2.2.4.5 CAA Supervisory Visits

The CAA supervision of the engineering functions of operators, away from their main bases, is undertaken by FOI 7, and the British Airways engineering facility at Birmingham was given a half-day visit approximately a year before the accident. The visit, in view of the time allocated, was necessarily superficial and only likely to have picked up gross discrepancies.

It is recommended that the CAA should review the purpose and scope of the FOI 7 Supervisory Visit.

2.2.5 Technical standards

Every engineer was responsible for the quality of his own work under the British Airways QMP. Quality standards at Birmingham were the responsibility of the local management; the Area Manager and his deputy, the Station Maintenance Manager, as part of their routine daily management task. Additionally the monthly Product Samples looked at methods and standards of work. Further quality monitoring was conducted during audits by the British Airways Quality Audit Unit and supervisory visits by the CAA. Thus any explanation of how inadequate work standards came to be employed on the night in question would also have to explain how the various quality and management monitors failed to detect earlier evidence of such inadequate standards. This could have been because the Shift Maintenance Manager had generally maintained high standards and his actions on the night were not representative of his normal standards or the monitoring procedures had failed to detect inadequate standards employed by him for some time, or some combination of the two. The two extreme explanations are categorised as follows:–

a. The Random Failure Theory

The lapses on that night were a 'one-off and therefore there had not been any previous symptoms to alert management/quality monitors.
b. The Systems Failure Theory

The lapses were typical of standards employed by the shift Maintenance Manager, which were either known to the management/quality monitors, who condoned them, or were not known to them because they had been unable to monitor the situation satisfactorily.

The track record of the One-Eleven fleet at Birmingham, in terms of the engineering criteria monitored, indicated that standards were generally good and the Produce Samples and Continuous Monitoring reported only minor discrepancies. This impression of a satisfactory operation, gained from in-house sampling at Birmingham, was supported by independent information from the physical audit carried out by British Airways Quality Audit Unit and the visit by the CAA. However, such quality lapses as those perpetrated by the Shift Maintenance Manager would not have been apparent to other than detailed observation until combined with such a task as the windscreen change. (See Paragraphs 2.2.1 and 2.2.2).

Some studies on the effects of human error on industrial safety indicate that the ratio of near misses to serious accidents could be as high as 600:1, therefore inadequate standards can be applied over a considerable period of time without becoming apparent.

British Airways point to the exemplary record of the Shift Maintenance Manager throughout his service with them as being proof of the continuing satisfaction of local management with the Shift Maintenance Manager's standards, and that record as being incompatible with anything other than an isolated example of inadequate work standards.

The Behavioural Psychologist described the Shift Maintenance Manager as conscientious and pragmatic rather than conscientious and meticulous. The behaviour of a man who, based on experience, changed the mandatory torque setting for the bolts, visually matched the replacement bolts, and arbitrarily selected A211-9D bolts for the fairing is compatible with that description only if he believed that these practices were accepted at Birmingham (whether or not they were in fact accepted).

Many of the actions taken that night by the Shift Maintenance Manager may be described as evidence of a lack of sufficient care in the execution of his responsibilities. Such a catalogue of events does not equate to a momentary lapse in behaviour but is more indicative of the approach of a conscientious and pragmatic engineer working in a non-procedural manner. Such a description of the individual is not necessarily inconsistent with his 'exemplary record', because until matched with a task such as this windscreen change, his approach was capable of going undetected by anything other than a close observation of his work practices.

At no time was any evidence presented to indicate that the standards and practices used on that night were in any way different from those used generally by the Shift Maintenance Manager. Nor were any external or job-related pressures identified which may have caused a lack of concentration. Indeed, even when shown the full list of errors and omissions that he had made, he still offered an explanation for each individual action.

The number of errors perpetrated on the night of this job came about because procedures were abused, 'short-cuts' employed and mandatory instructions ignored. Even when doubt existed about the correct size of bolt to use, the authoritative documents were not consulted. After the event the Shift Maintenance Manager concerned demonstrated a lack of appreciation of the significance of failure to adhere to the specified procedures, good trade practices and even the requirements of the
Maintenance Manual. This makes it most unlikely, in the view of the AAIB, that the practices which permitted such errors were 'one-offs' but supports the argument for a longer term failure by the Shift Maintenance Manager to observe the promulgated procedures.

Such compromised standards on the part of the Shift Maintenance Manager cannot explain all of the errors which led to the accident, such as his failure to react to the various cues indicating that something was wrong. However, they did reduce his potential to achieve quality in the task and provided a context in which mistakes could go undetected, building into a critical chain.

Thus the explanation of how the catalogue of errors occurred on the night in question lies somewhere on the continuum between the stated extremes of Random and System Theories with contributions from each. The system element being that which accommodated the application of inadequate standards by the Shift Maintenance Manager for some time and the perceptual errors contributing the random element.

2.2.6 Engineering Requirements

2.2.6.1 Periodic training and testing

There is clear evidence of a different philosophy applied to pilots, who are required to undergo regular line and base standardisation checks, and engineers who are not subjected to any comparable standardisation or refresher checks.

An experienced Licenced Engineer with an exemplary record demonstrated an abuse of procedures, employed short cuts, ignored mandatory instructions and failed to conform with what is generally regarded as 'good trade practice'. Therefore, it is recommended that the need for periodic training and testing of maintenance engineers should be reviewed by the CAA.

2.2.6.2 Check lists and technical documentation

The work of flightcrew during routine and emergency operations is highly formalised, with check lists to be followed at critical stages of the flight. Even though they may have already performed the operation several times previously that day, the flightcrew will still follow a check list, item by item, on each occasion, and in some cases individual responses will be monitored by another crew member. Whilst the use of the Maintenance Manual is mandatory and some of the processes detailed in it are complex, apart from work on flying and engine controls, and 'Vital Points' (if defined) an authorised engineer may work on an aircraft unsupervised and unchecked.

In spite of the itemised nature of the procedures detailed in the Maintenance Manual, in some areas on work not involving flying and engine controls, including the BAC One-Eleven windscreen change, an engineer may clear the documentation with a one line statement saying in effect, 'Defect cleared', with a pre-printed Release to Service certificate contained on the form. The use of an itemised servicing procedure in the form of a document that requires signatures at each stage is considered to be a valuable aid to ensuring that the correct process has been acknowledged and signed for.

2.2.6.3 Eyesight standards

The Shift Maintenance Manager required mild corrective lenses to read small print or figures and he did not use his glasses whilst performing the windscreen replacement. The lack of corrective glasses
cannot account for the majority of the errors made that night, but may have subconsciously influenced the Shift Maintenance Manager in short circuiting some of the procedures which rely on adequate eyesight.

It is recommended that the CAA should recognise the need for the use of corrective glasses, if prescribed, in association with the undertaking of aircraft engineering tasks.

2.3 ATC Emergency procedures

In the circumstances it was imperative that the co-pilot was given all the help that could be made available. In this case the Bristol Sector Controller neither complied with the co-pilot's specific request for radar navigational assistance, nor did he advise the flight of its position or give any relevant information regarding Southampton, such as current weather, runway in use, pressure settings, etc, as would have been expected.

Given that emergencies are rare, it is inadvisable to leave to chance the possibility of a controller having experience in such a situation. The provision of training in the handling of emergencies and other infrequent occurrences is therefore considered to be essential. A persuasive argument in favour of emergency training is that adequate preparation can lessen the stress which may be induced in the real situation. While such an argument has a good deal of face validity, supporting data are not easy to find. Nevertheless, experiencing similar situations in training and learning to cope, should instil in the individual a degree of confidence in his ability to handle real events. Emergency evacuation and fire drills are conducted on this premise.

It is sometimes argued that training for emergencies is not possible because all emergencies are essentially different from each other, cannot be anticipated and therefore cannot be programmed into a course of training. The fact that emergencies will differ in detail or in the precise accumulation of events which lead to their occurrence, does not, however, negate the value of training. All too often emergency training focuses on the use of a limited number of problem situations. These become familiar to trainees and are seldom updated from one training course to the next. Not only will trainees lack the ability to cope with other events, but this method encourages a tendency to fit novel situations into known patterns using strategies which have worked in the past but may not be applicable to the current problems. During training a variety of scenarios should be employed to provide both experience in coping with a number of different situations and the opportunity to build confidence in handling them.

Whilst no two emergencies may be identical, there are a number of basic steps which have to be taken in dealing with them. In ATC terms this would include ensuring that there are no other conflicting aircraft, ascertaining the extent of the problem, informing the appropriate emergency services, etc. If these predictable elements of emergency handling are well trained and automatic, they release 'spare capacity' which can be devoted to coping with the unanticipated or unique aspects of each case.

The Bristol Sector Controller quite properly intended to allow his actions to be guided by the decisions of the co-pilot and the Bristol CSC but he formulated no specific plan of action to deal with the emergency. No training programme, however well constructed, can guarantee the trainee's performance during a genuine emergency. However, more preparation for handling emergencies during both initial training and as part of a systematic pattern of refresher training and skill maintenance may help controllers involved in incidents to realise that such events can happen and would prepare them to accept the reality of the situation and to cope with it more effectively.
It is recommended that the Authority ensure that prior to the issue of an ATC rating a candidate shall undergo an approved course which includes training in both the theoretical and practical handling of emergency situations. This training should then be enhanced at the validation stage and later by regular continuation and refresher exercises.

3. Conclusions

(a) Findings

(i) The crew were properly licenced, medically fit and rested to conduct the flight.

(ii) The take-off and initial climb from Birmingham were uneventful.

(iii) Whilst climbing through 17,300 feet pressure altitude and on a heading of 1950M, the left windscreen was blown out of its frame under the influence of cabin air pressure.

(iv) The commander was sucked partially out of the windscreen aperture and blown backwards over the flight deck roof. He was restrained from further egress by the cabin staff who held onto him until after the aircraft had landed.

(v) The co-pilot suffered a degree of disorientation but he was able to regain control of the aircraft and start an immediate descent.

(vi) The remaining crew and passengers suffered no ill effects from the rapid decompression and lack of oxygen. It has been calculated that the cabin altitude was unlikely to have been greater than 13,000 to 13,500 feet, achieved within two seconds after the loss of cabin pressure.

(vii) The left windscreen had been replaced and the task certificated by the same Shift Maintenance Manager with the appropriate British Airways authorisation 27 hours before the accident flight and the aircraft had not flown since its replacement.

(viii) The replacement windscreen had been installed with 84 bolts (A21 1-8C) whose diameters were approximately 0.026 of an inch below the diameters of the specified bolts (A21 1-8D), and 6 bolts (A21 1-7D) which were of the correct diameter, but 0.1 of an inch too short.
The windscreen fitting process was characterised by a series of poor work practices, poor judgements and perceptual errors, each one of which eroded the factors of safety built into the method of operation promulgated by British Airways.

A series of cues were available to the Shift Maintenance Manager to draw attention to the use of incorrect bolts but all went unnoticed or unheeded.

Although an independent final inspection would have had a high probability of detecting the error, the task of the windscreen installation was not designated a 'Vital Point' and consequently no duplicate inspection was called for and none took place.

The work of the Shift Maintenance Manager was not subject to review by another manager and thus there was no backstop with any chance of detecting his errors. Errors that were made more likely by the sleep deprivation and circadian effects associated with the end of a first night shift.

The practices employed by the Shift Maintenance Manager which permitted such errors were not considered to be 'one-offs' but were symptomatic of a longer term failure on his part to observe the promulgated procedures.

The British Airways local management, Product Samples and Quality Audits had not detected the application of inadequate standards by the Shift Maintenance Manager, because they did not monitor directly the working practices of Shift Maintenance Managers.

The windscreen replacement task may have been unique in that it alone could accommodate the errors associated with its fitment, such that they were exposed so dramatically the first time that the windscreen was called upon to resist cabin pressure.

The CAA supervisory visit was superficial and as such did not monitor the working practices of Shift Maintenance Managers.

The British Airways local Product Samples at Birmingham did not provide an independent assessment of standards as they were carried out by the person who had direct managerial responsibility for the tasks.
Literature circulated by British Airways stressed the need for open reporting through QMDRs, however, a number of the Maintenance Managers indicated that they felt more comfortable with the E1022, Ground Occurrence Report Form, with which they were particularly familiar, finding it a more direct and responsive reporting system.

The Shift Maintenance Manager required mild corrective lenses to read small print or figures but did not use his glasses whilst performing the windscreen replacement.

Following receipt of the co-pilot's distress message, and when two way communication had been re-established, ATC facilitated diversion of the flight to Southampton Airport.

The nature of the emergency was never fully appreciated by LATCC.

The Bristol Sector Controller's training in the handling of emergency situations was probably inadequate.

The recovery to Southampton was managed effectively by the co-pilot who was assisted by the Southampton Zone Controller.

Causal factors:

(i) A safety critical task, not identified as a 'Vital Point', was undertaken by one individual who also carried total responsibility for the quality achieved and the installation was not tested until the aircraft was airborne on a passenger carrying flight.

(ii) The Shift Maintenance Manager's potential to achieve quality in the windscreen fitting process was eroded by his inadequate care, poor trade practices, failure to adhere to company standards and use of unsuitable equipment, which were judged symptomatic of a longer term failure by him to observe the promulgated procedures.

(iii) The British Airways local management, Product Samples and Quality Audits had not detected the existence of inadequate standards employed by the Shift Maintenance Manager because they did not monitor directly the working practices of Shift Maintenance Managers.
4. Safety Recommendations

The CAA should examine the applicability of self certification to aircraft engineering safety critical tasks following which the components or Systems are cleared for service without functional checks. Such a review should include the interpretation of 'single mal-assembly' within the context of 'Vital Points' and the requirements which include a waiver making the definition of 'Vital Points' non-mandatory for aircraft with a Maximum Take-Off Weight Authorised of over 5,700 kg which were manufactured in accordance with a Type Certificate issued prior to 1 January 1986.

4.1

British Airways should review their Quality Assurance system and the relative roles of E1022s and QMDRs be clarified and they should continue to educate and encourage their engineers to provide feedback from the shop floor.

4.2

British Airways should review the need to introduce job descriptions/terms of reference for engineering grades including Shift Maintenance Manager and above.

4.3

It is recommended that British Airways should review the Product Sample procedure with a view to achieving an independent assessment of standards and conduct an in-depth audit into the work practices at Birmingham.

4.4

The CAA should review the purpose and scope of the FOI 7 Supervisory Visit.

4.5

The CAA should consider the need for the periodic training and testing of Engineers.

4.6

The CAA should recognise the need for the use of corrective glasses, if prescribed, in association with the undertaking of aircraft engineering tasks.

4.7

The CAA should ensure that, prior to the issue of an ATC rating, a candidate shall undergo an approved course which includes training in both the theoretical and practical handling of emergency situations. This training should then be enhanced at the validation stage and later by regular continuation and refresher exercises.
D F KING
Inspector of Air Accidents
Air Accidents Investigation Branch
Department of Transport
January 1992

The Civil Aviation Authority's response to these Safety Recommendations is contained in CAA Follow-up on Accident Reports (FACTAR) No.1/92, to be published coincident with this report.

Return to Inspector's Investigations (Formal Reports) Index
Return to Air Accidents Investigation Branch Index
Return to DETR Aviation Index
Return to Home Page
Web Site Terms
BAC One-Eleven, G-BJRT: Appendix A

Aircraft Accident Report No. 1/92 - (EW/C1165)

Report on the accident to BAC One-Eleven, G-BJRT over Didcot, Oxfordshire on 10 June 1990

APPENDIX A

ATC TRANSCRIPT

Doubtful words are indicated by a series of question marks. The time signal is shown in brackets as it occurs in the sequence. There was a slight difference between the time signals at LATCC and Southampton (SOTON) but it was of no significance and has not been adjusted.

The co-pilot was unable to hear the transmissions from LATCC during the descent and before he had slowed the aircraft to 150 kt at FL 110, due to the noisy cockpit environment produced by airflow noise and the captain flailing on the outside of the aircraft.

<table>
<thead>
<tr>
<th>To</th>
<th>From</th>
<th>Recorded Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCC</td>
<td>BAW 5390</td>
<td>Mayday mayday - - London this is the speedbird five three nine zero mayday mayday mayday</td>
</tr>
<tr>
<td>BAW 5390</td>
<td>LATCC</td>
<td>Speedbird five three nine zero Roger mayday acknowledged out</td>
</tr>
<tr>
<td>LATCC</td>
<td>BAW 5390</td>
<td>---- ??? ??? ??? Speedbird- (0733)</td>
</tr>
<tr>
<td>BAW 5390</td>
<td>LATCC</td>
<td>Er Speedbird five three nine zero er confirm acknowledge mayday</td>
</tr>
<tr>
<td>LATCC</td>
<td>BAW 5390</td>
<td>Mayday mayday</td>
</tr>
<tr>
<td>BAW 5390</td>
<td>LATCC</td>
<td>Er Speedbird five three nine zero London Control one three two d- decimal eight mayday acknowledged</td>
</tr>
<tr>
<td>LATCC</td>
<td>BAW 5390</td>
<td>Speedbird five??????? zero mayday mayday mayday emergency depressurisation on a radar heading of one nine five descending to flight level one hundred</td>
</tr>
<tr>
<td>BAW 5390</td>
<td>LATCC</td>
<td>Speedbird five three nine zero mayday acknowledged</td>
</tr>
</tbody>
</table>
understand er descending flight level one zero zero on heading one nine five degrees

(0734) Speedbird five three nine zero is maintaining one one zero -

Speedbird five three nine zero understand maintaining one one zero

London from thirty four would you like us to try to relay thirtytwo eight

Er it's okay Sir I think he may be receiving

Thirty four er thanks all the same Sir

And Speedbird five three nine zero how do you read now Sir

(0735) Er London Speedbird two one eight good morning er we're descending to flight level two seven zero

Speedbird two one eight good morning Sir make your heading now one one five degrees and continue descent down to flight level one one zero to be level abeam Kenet

- Speedbird two one eight radar heading one one five descend flight level one one zero to be level abeam Kenet

Speedbird five three nine zero London Control how do you read

Speedbird five three nine zero London Control how do you read (0736)

Speedbird five three nine zero er London Control how do you read now Sir

London Dan' two three one good morning flight level two nine zero direct to Berry Head
DAN 231 LATCC Dan' two three one good morning Sir maintain flight level two nine zero

LATCC DAN 231 Maintaining two nine zero two three one

LATCC BAL 224A 'Morning London Britannia two two four alfa at three one eight climbing three three zero direct Berry Head

BAL 224A LATCC Britannia two two four alfa good morning maintain flight level three three zero on reaching

LATCC BAL 224A S-two two four alfa wilco (0737)

LATCC BAL 224A Britannia two two four alfa's reaching three three zero

BAL 224A LATCC Two two four alfa roger

BAW 5390 LATCC Speedbird five three nine zero London one three two eight (0738)

BAW 5390 LATCC Er sorry station calling try again

LATCC EIN 522 Er London the speedbird five three nine zero's having problems ??????

LATCC BAW 5390 ?????? five three nine zero do you read

BAW 5390 LATCC Speedbird five three nine zero read you strength five Sir go ahead now

BAW 5390 EIN 522 Five three nine zero go ahead

BAW 5390 EIN 522 Five three nine zero go ahead London reading you

LATCC BAW 5390 London this is speedbird five three nine zero this is er speedbird five three nine zero

BAW 5390 LATCC Speedbird five three nine zero London Control one three two decimal eight I hear you strength five Sir go ahead now

LATCC BAW 5390 Roger Sir we have had an emergency depressurisation and er requesting radar assistance please for the nearest airfield (0739)
BAW 5390  LATCC  Er speedbird five three nine zero roger can you accept landing at Southampton

LATCC  BAW 5390  Speedbird er five three nine zero I am familiar with Gatwick would appreciate Gatwick

BAW 5390  LATCC  Er speedbird five three nine zero roger if you make a left turn now Sir direct to Mayfield

LATCC  BAW 5390  - nine zero if you can er direct me into Southampton affirmative

BAW 5390  LATCC  Okay sir would you prefer Southampton or Gat-er Gatwick

BAW 5390  LATCC  Er Speedbird five three nine zero confirm you wish to route now to Southampton

LATCC  BAW 5390  Speedbird five three nine zero er we have (fuselage) sorry (heads down) - speedbird five three nine zero - I am maintaining one one zero I am at er one fifty knots requesting radar assistance into Southampton

BAW 5390  LATCC  Speedbird five three nine zero roger er standby Sir (0740)

BAW 5390  LATCC  And speedbird five three nine zero if you er commence descent Sir down to flight level seven zero initially

LATCC  BAW 5390  Descend seven zero five three nine zero

LATCC  RYR 506  London the Ryanair five zero six standing by for descent Sir

RYR 506  LATCC  Five zero six roger cleared down to flight level one one zero level er by Kenet

LATCC  RYR 506  - leaving two one zero for one one zero to be level by Kenet five - five zero six

LATCC  BAW 5390  Confirm height cleared to

BAW 5390  LATCC  Er speedbird five three nine zero now cleared down to flight level seven zero if you make one left hand orbit in your present position please Sir be handing you off very shortly (0741)
LATCC BAW 5390 Cleared to seven zero speedbird five three nine zero

BAW 5390 LATCC Speedbird five three nine zero continue now with
London Control frequency is one three four decimal
four five they will see you into Southampton

LATCC BAW 5390 - four four five thanks very much

BAW 5390 LATCC Bye

BAW 218 LATCC Speedbird two one eight report your heading now to
London Control frequency is one three two decimal
zero five good day

LATCC BAW 218 One three two zero five with heading speedbird two
one eight good day

EIN 602 LATCC Shamrock six zero two contact London Control one
three three decimal four five good day

LATCC EIN 602 - Three four five

EIN 522 LATCC Shamrock five two two contact London one two seven
decimal seven good day

LATCC EIN 522 One two seven seven five two two (0742)

RYR 506 LATCC Ryanair five zero six make your heading now zero nine
five degrees

LATCC BAW 5390 This is ??? ??? ??? nine zero descending out of eight
zero for seven zero - no if you could hold on if you
could hold onto him

BAW 5390 LATCC Er speedbird five three nine zero roger remain on this
frequency then Sir and I will give you radar vectors
into Southampton

LATCC RYR 506 - Er London confirm radar heading zero nine zero for
Ryanair five zero six

RYR 506 LATCC Five zero six make it zero nine five please

LATCC RYR 506 Zero nine five for Ryanair five zero six

LATCC BAW 5390 Descending to seven zero Sir
BAW 5390 LATCC  Five three nine zero roger confirm you wish to remain on this frequency

BAW 5390 LATCC  And speedbird five three nine zero continue descent now down to four thousand feet

LATCC BAW 5390  London it's speedbird five three nine zero

BAW 5390 LATCC  Speedbird five three nine zero how do you read now sir

LATCC BAW 5390  Roger reading you er strength five I'm afraid er we have some er debris in the flight deck and er could you confirm the frequency you changed me to (0743)

BAW 5390 LATCC  Okay sir if you remain on this frequency sir and continue descent down to four thousand feet please

LATCC BAW 5390  Four thousand feet on QFE confirm QNH confirm

BAW 5390 LATCC  Affirmative sir

LATCC BAW 5390  What is the QNH five three nine zero

BAW 5390 LATCC  Standby sir

BAW 5390 LATCC  And speedbird five three nine zero if you check that now on er frequency one three one decimal zero Southampton approach

LATCC BAW 5390  One three one decimal zero bye bye

BAW 5390 LATCC  Bye

LATCC OORDL  London oscar oscar romeo delta lima good morning

OORDL LATCC  Oscar oscar romeo delta lima good morning sir maintain flight level eight zero and you can set course from your present position -

OORDL LATCC  - Direct for the bravo romeo india

SOTON BAW 5390  - Five three nine zero do you read

BAW 5390 LATCC  Five three nine zero read you strength five sir

LATCC OORDL  Oscar delta lima maintaining eight zero and proceeding direct er bravo romeo india
BAW 5390   LATCC   Er speedbird five three nine zero how do you read now sir (0744)

SOTON   BAW 5390   ...ton it's speedbird five three nine Z -

BAW 5390   LATCC   Speedbird five three nine zero read you strength five go ahead with your message

BAW 5390   LATCC   Speedbird five three nine zero

LATCC   BAL 224A   Er London it's britannia two two four alfa er speedbird five three nine zero's now talking to Southampton on er one three one zero

BAL 224A   LATCC   Two two four alfa roger thanks a lot sir

LATCC   BAL 224A   Thank you (0745)

SOTON   BAW 5390   Southampton this is speedbird five three nine zero do you read (0744)

BAW 5390   SOTON   Speedbird five three nine zero good morning identified on hand over London radar six miles to the west of Southampton airfield what is your passing level

SOTON   BAW 5390   Roger sir presently leaving flight level six four could you confirm er your QNH please

BAW 5390   SOTON   Roger my QNH one zero one nine millibars the runway in use is runway zero two the wind is three five zero degrees at twelve knots

SOTON   BAW 5390   Roger sir I am not familiar with er er Southampton I request you shepherd me on to the runway please (0744:30)

BAW 5390   SOTON   Roger this is copied roll out then on to a heading of one eight zero

SOTON   BAW 5390   Radar heading of one eight zero speedbird five three nine zero

BAW 5390   SOTON   Five three niner zero what is your passing level

SOTON   BAW 5390   Passing level size zero for four zero sir

BAW 5390   SOTON   Thank you and what is your number of persons on
We have eighty four passengers sir and er I think that will be all until we're on the ground (0745)

Roger that's copied

And we've been advised that it's pressurization failure is that the only problem

Speedbird five three nine zero turn left heading one one zero

Turning left one one zero speedbird five three nine zero

Five three nine zero we've been advised it's pressurization failure is that the only problem

Er negative sir the er captain is half sucked out of the aeroplane I understand I believe he is dead (0745:30)

Roger that is copied

Er flight attendant's holding on to him but er requesting emergency facilities for the captain I I I think he's dead

Roger that is copied continue your descent then at two thousand feet QNH one zero one nineer make it a nice gentle turn at the moment you're seven miles southwest of the airfield

Five three niner er five three nine zero that's affirm that's er ro-radar heading one one zero descending to two thousand feet

Affirm what is your passing level (0746)

I'm leaving flight er five thousand five hundred feet on ten nineteen

Roger that's copied give you a little bit more space then turn right on to a heading of one eight zero

Turning right onto one eight zero speedbird five three nine zero could you please confirm the er the length of your runway at Southampton is acceptable for er a One-Eleven (0746:30)
BAW 5390  SOTON  Yes it is acceptable for a One-Eleven and I'll just give you the figures very shortly

SOTON  BAW 5390  Er as long as we have er at least two and a half thousand metres I am happy

BAW 5390  SOTON  Er I', afraid we don't have two and a half thousand metres neither do Bournemouth we have a maximum of eighteen hundred metres

SOTON  BAW 5390  Five three nine zero that is acceptable

BAW 5390  SOTON  Roger that is copied

SOTON  G-BS  Bravo sierra sorry to interrupt we're at Hurst Castle (0747)

G-BS  SOTON  Thank you bravo sierra contact Bournemouth frequency one one nine decimal six two

SOTON  G-BS  One one nine six two thank you

BAW 5390  SOTON  Speedbird five three niner zero what is your passing level

SOTON  BAW 5390  Speedbird five three nine zero passing level er three eight fifty

BAW 5390  SOTON  Thank you very much continue descent altitude one seven zero zero feet QNH one zero one niner if I turn you in now you will have fourteen miles is that sufficient

SOTON  BAW 5390  Give me twenty miles speedbird five three nine zero descend to er conform level clear to (0747:30)

BAW 5390  SOTON  One seven zero zero feet

SOTON  BAW 5390  Cleared to seventeen hundred feet on QFE

BAW 5390  SOTON  Er QFE one zero one seven now

SOTON  BAW 5390  QFE one zero one seven speedbird five three nine zero

BAW 5390  SOTON  Five three nine zero commence a gentle left turn now then onto a heading of three six zero I'll give you twenty track miles to run for touchdown (0748)
SOTON BAW 5390 Roger sir do you have an ILS frequency

BAW 5390 SOTON Er negative I have a VOR but it will be radar vectors onto the visual final

SOTON BAW 5390 Five three nine zero thank you very much we are three greens er and flaps forty five so I'm set up for an approach but make it please very gentle

BAW 5390 SOTON Yes I will do indeed you are number one in traffic

SOTON BAW 5390 Five three nine zero thank you

UKA 455 SOTON Air Ukay four five five are you with me

SOTON MAQ 422 Southampton er good morning this is Mac Air four two five zero level er holding over hotel romeo november (0748:30)

UKA 455 SOTON Air Ukay four five five Southampton

SOTON UKA 455 Yeah we're finally levelling six zero on one two zero

UKA 455 SOTON Thank you very much turn right now own navigation for Ortac

SOTON UKA 455 Ortac ukay four five five request level change one two zero

SOTON MAQ 422 Southampton er good morning mac air four two five thousand and we're er hotel romeo november (0749)

SOTON BAW 5390 Speedbird er five three nine zero heading er turning er left onto a heading of due north and levelling er eighteen hundred feet

BAW 5390 SOTON Thank you make that one seven zero zero feet on the QFE one zero er one seven millibars turn right heading zero two five final approach

SOTON BAW 5390 Descending on to seventeen hundred feet and turning right onto zero two five er speedbird five three nine zero (0749:30)

UKA 455 SOTON Ukay four four four five five contact London frequency one three four four five
SOTON UKA 455 One three four four five cheerio

MAQ 422 SOTON Mike alfa kilo four four two descend altitude two five zero zero QNH one zero one niner

SOTON MAQ 422 Leaving zero five zero to twenty five hundred feet one zero one niner mac four two two

MAQ 422 SOTON Four two two contact Bournemouth frequency one two five decimal six bye bye

SOTON MAQ 422 Two two now to one two five point six so long

BAW 5390 SOTON Speedbird five three nine zero is nine miles from touchdown you are clear to land the wind indicates zero two zero degrees one four knots descend to height one five zero zero feet on the QFE one zero one seven

SOTON BAW 5390 Roger sir descending to fifteen hundred feet talk me me down all the way I need all the help I can get

BAW 5390 SOTON Roger that is copied

SOTON BAW 5390 We're running on a heading of zero two five five five three nine zero

BAW 5390 SOTON Roger and er you will be able to stop on the runway to evacuate the aircraft on the runway you are number one you are clear to land (0750:30)

SOTON BAW 5390 Five three nine zero thank you very much

BAW 5390 SOTON Your range now is seven miles from touchdown you're on the extended centreline

SOTON BAW 5390 Five three nine zero thank you very much guidance all the way please

BAW 5390 SOTON Of course

BAW 5390 SOTON Your range now is at six and half miles you are clear to land you are on the final approach track

SOTON BAW 5390 Five three nine zero (0751)

BAW 5390 SOTON Five three nine zero turn left five degrees you are five miles from touchdown continue your descent at the
recommended rate for a three degree glide path (0751:30)

SOTON  BAW 5390  Roger sir if you can er understood

BAW 5390  SOTON  You need not acknowledge further instructions unless requested it will be an interrupted talk down but feel free to interrupt if you need to you are clear to land four and half miles on the final approach track heading zero two zero

SOTON  BAW 5390  Emergency facilities er facilities please er and the ambulance

BAW 5390  SOTON  Everything is available for you

SOTON  BAW 5390  Er five three nine zero thank you

BAW 5390  SOTON  Your range is four miles your height should be one two five zero feet and the wind is zero two zero degrees at one zero knots (0752)

SOTON  BAW 5390  Five five five three nine zero thank you

BAW 5390  SOTON  Three and a half miles from touchdown turn right three degrees on the final approach track heading is good

SOTON  BAW 5390  Five three nine zero thank you very much

BAW 5390  SOTON  You're lined up you are clear to land

SOTON  BAW 5390  Five three nine zero

BAW 5390  SOTON  You are three miles from touchdown the height should be nine five er zero feet on a three degree glide path you are lined up you are clear to land (0752:30)

SOTON  BAW 5390  Five three nine zero thank you er I have the runway in sight

BAW 5390  SOTON  Thank you and your are clear to land do you wish me to continue with further information

SOTON  BAW 5390  Negative

BAW 5390  SOTON  Roger remain on this frequency
SOTON  BAW 5390  Five three nine zero

BAW 5390  SOTON  Speedbird five three nine zero fantastic approach you may shut down on the runway and leave the frequency

SOTON  BAW 5390  Five three nine zero thank you
35 DAY SHIFT PATTERN - Part 1
<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35 DAY SHIFT PATTERN - Part 2
Aircraft Accident Report No. 1/92 - (EW/C1165)

Report on the accident to BAC One-Eleven, G-BJRT over Didcot, Oxfordshire on 10 June 1990

APPENDIX D

QUALITY MONITORING SCHEDULE
PRODUCT SAMPLE
(AIRCRAFT ON-LINE AND MINOR CHECK)

This Form is to be used when applying the Quality Monitor Schedule EDP-MON-01-01 Appendix B item 01.

1 Cleanliness: Check areas and assemblies

2 Condition: check the following for general condition:-

2.1 External airframe and attachments

2.2 Wheel Bays and assemblies

2.3 Service Centres/Equipment Bays

2.4 Engines

2.5 Interior Furnishing

2.6 Flight Deck

2.7 Galleys

2.8 Toilets

2.9 Emergency Equipment

2.10 Decals/notices/documentation

3 Rectification standards monitor: Select 3 defects actioned during this input and monitor for recurrence and number of further rectifications required to effect a cure over a minimum of 7 days in service. Record the number of recurrences for each defect. Reference defects and highlight by Sect/Log/Defect NO. (The information should be obtained from DISC) and attach to ProductSample.
4 Functioning: Select specific systems for Test/Part Test to be conducted in accordance with the M.M and in conjunction with Authorised staff.

5 ATP/Work sheets: Manuals, worksheets and Technical Logs selected for check on amendment state, condition, location, accuracy, legibility, eligibility.

6 Work carried forward: Current record of ADD and DDA. Return to Main Report Return to Inspector's Investigations (Formal Reports) Index Return to Air Accidents Investigation Branch Index Return to DETR Aviation Index Return to Home Page Web Site Terms
Comparison of bolt heads in countersinks
(shown approximately 1.9 life-size)
BAC One-Eleven, G-BJRT: Appendix F

Aircraft Accident Report No. 1/92 - (EW/C1165)

Report on the accident to BAC One-Eleven, G-BJRT over Didcot, Oxfordshire on 10 June 1990

APPENDIX F

PSYCHOLOGIST'S COMMENTS

The human factors issues raised by the fitting of incorrectly sized bolts to the windscreen of this aircraft may be roughly categorized into those directly associated with the individual who carried out the work, and those associated with the system or environment within which he operated. These factors are considered in turn.

Factors Associated with the Individual

The errors made by the Shift Maintenance Manager in fitting the windscreen may be listed as follows:

a. He failed to adopt the ideal procedure of identifying the type of bolt required by reference to the illustrated parts catalogue (IPC), and its location by reference to the stores computer. Instead he simply made a match that relied on his own perception of identity between a used bolt removed from the old windscreen and a new one from the parts carousel drawer.

b. He failed to heed the storeman who told him words to the effect "They're 8Ds in that windscreen", and continued to make a perceptual match.

c. In making the perceptual match, he accepted as identical two bolts that are different.

d. He failed either to notice or to question the significance of the fact that the incorrectly fitted bolts left an abnormally large amount of countersink showing once they had been fitted.

e. He noticed, when fitting a windscreen the following night that 8D bolts were being used to fit it, believed himself to have used 7D bolts the previous night, but, even so, failed to question the acceptability of his previous night's work.

Perceptual Problems

The above factors may be split into those in which he made what could be termed poor judgements or work practices and those that involve perceptual errors. Item c, the failure to identify the difference between the used 7D bolt and the new 8C bolt may reasonably be judged a perceptual error.

The Shift Maintenance Manager claims that he made this perceptual match accurately in the well lit stores area of the hangar, and noted that the used bolt matched with a new size 7D bolt. When he...
came to make the match in the poorly lit stores of the internationalpier area, however, he was content that the used bolt matched a new size 8C bolt. He claims that he made the discrimination in terms of both sight and touch. He held both bolts between the forefinger and thumb of one hand while rolling them between the forefinger and thumb of the other. The subjective similarity of these bolts may not be defined without some form of experiment: it is fair to suggest, however, that they are similar, but not so similar that they cannot be distinguished with reasonable care. The Shift Maintenance Manager does make limited use of reading glasses, which appear to be of a fairly weak prescription, but does not habitually use them at work and was not wearing them on this occasion. Given the poor quality of lighting in the pier area stores, he cannot be regarded as having been in the best visual environment or possessing the best visual equipment for making a visual discrimination that required some degree of acuity.

Item d above may also be regarded as a perceptual error if he failed to perceive that there was more countersink than normal showing around the heads of the 8C bolts. It is possible, however, that he did notice this, but made what might be termed a poor judgement in not acting upon his awareness that the heads looked too far down the countersink. The latter possibility may be regarded as the more likely since, when one of his colleagues spoke with him after the accident, he claims that he remembered that the countersinks had appeared too big - ie, he had noticed extra countersink showing, but interpreted this in terms of an oversize countersink and not in terms of an undersize bolt.

Although such an interpretation may seem extraordinary, it is well documented that individuals who generate an internal model of the world with which they are content often require overwhelming contradictory evidence before they are prepared to reassess their model. This tendency may well be exacerbated when the mental resources required for such reassessment are limited by, for example, sleep deprivation or circadian (time of day) effects.

The effects of time of day on many physiological and psychological variables are heavily researched, the results indicating that the period between 0300 and 0600 is that during which human performance is at its lowest ebb. It is likely that such time of day effects were important both in enabling the Shift Maintenance Manager to fail to make accurate perceptual discriminations, and in terms of enabling him to fail to appreciate the significance of cues with which he was presented. Direct circadian effects are compounded in this instance with some sleep deprivation. As is common among those on a first night shift, he had slept normally the night before his shift, but slept little during the afternoon before going on shift. Thus, at 0300-0500 he would have had a significant requirement for sleep as well as being at his circadian low. These factors may reasonably be regarded as combining to exacerbate the effects described above.

**Problems of Judgement and Work Practice**

Items a, b, and e above may be regarded as problems of poor judgement or work practice. The Shift Maintenance Manager's failure to use the IPC and stores computer to their best effect, his failure to heed the storeman's identification of the bolts, and his failure to take any retrospective action when he realised the following day that he was using bolts of a different size from those he had used on the same job the previous day, lead to the conclusion that he was not working with the degree of care that the job demanded. What is less clear, however, is whether he was doing the job in a way that he regarded as being of a standard acceptable to the system within which he was working, or whether he knew that his work practices left a good deal to be desired, but chose to ignore this knowledge in the interests of expediency.
A clue to the solution may be found in the Shift Maintenance Manager's other behaviour and in the opinions of his colleagues. A consistent picture emerges from such considerations. He appears to be regarded as solid and careful by others, and this assessment seems substantiated by his behaviour on the night in question. Although his shift did not start until 1030, he was at work 45 minutes early in order to prepare himself and to get the work of his shift organised. He also continued to work through his meal break. At interview he does not give the impression of one who would take his responsibilities lightly, or behave in a way that he would consciously appreciate as derelict. One is left with the impression that the Shift Maintenance Manager behaved in a way that he felt was appropriate to the circumstances in which he found himself. Overall, his approach to the job could be summarised as conscientious but pragmatic, rather than conscientious and meticulous. A good example of this approach concerns his decision to torque the windscreen bolts to 20 lbf in instead of the specified 15 lbf in. He plainly did not do this as a matter of expediency, but because he felt that this was a better way to do the job. What was missing was an appreciation that such individual work practices are completely out of place in aircraft servicing.

This impression is reinforced by conversation with other shift supervisors. At informal interview, these individuals gave the general impression of being free to tackle jobs in idiosyncratic ways, and when informed of the manner in which the Shift Maintenance Manager behaved on the night in question they did not (except to one individual) regard this as unreasonable or demanding of censure. It does not seem unreasonable to suggest that the general climate in the maintenance facility at Birmingham was not one in which the care and safety awareness exhibited by the staff matched the criticality of the task. The nature of the maintenance operation at Birmingham and the setting and checking of operational standards is therefore examined below.

**The Operating Environment**

**Inspection**

A procedure included in many industrial operations that have safety implications is that of independent inspection of work. It is possible that independent inspection would have prevented this accident since the poor fit of the bolt heads in the countersinks was potentially observable. There are some more important general points that may be made about the utility of inspection in safety-critical systems:

a. Independent inspection does not have a small effect on the possibility of a maintenance error going undetected, but reduces it dramatically. If an individual operator has, say, a .01 chance of not noticing a fault, then the combined probability of two such individuals failing to notice the fault becomes only .0001.

b. If an individual has made an error in work that he has carried out, then (because he has developed a perceptual "set") he is less likely to detect that error than an individual who comes to the task both afresh and in a "checking" frame of mind.

c. The knowledge that work is to be inspected may change the approach of an operator to his task. It could be argued that the operator would become less careful if he felt that inspection would pickup his errors, and would make him feel less trusted and responsible. For individuals with some pride in their work, however, the knowledge that their work was to be inspected might well make them more careful since they would not wish to be found to have made a mistake.
e. Inspection is likely to have a general effect on the individual operator's perception of the standards and care expected of him by the system. Inspection of work may serve as a regular reminder to operators that the work they carry out has safety importance, and must be carried out meticulously. It is likely that an operator will perceive the absence of inspection as an indication that the managers of the system regard the cost saving involved as more important than the safety benefit, and this may well influence the Shift Maintenance Manager's general approach to his task.

It is thus suggested that inspection represents an important addition to the maintenance work practices evident in this accident, and that it is especially important for work carried out at night, when errors are more likely to be made, and less likely to be detected by their perpetrators.

Lastly, it is interesting to note in this context that had this windscreen been changed in the Royal Air Force, not only would the work have been inspected, but the aircraft would have been pressure tested on the ground before flight.

Maintenance of Standards in Working Practices

There appears to be a stark contrast between the procedures adopted to ensure that pilots adhere to standard operating procedures and to ensure that they are familiar with good working practice and those adopted for maintenance personnel. Although the maintenance environment is checked periodically to ensure, for example, the calibration of equipment and currency of technical information, there does not appear to be any checking of the knowledge of, or techniques used by, the engineers. In the absence of such checks, and in the apparent absence of any courses, instruction, or training designed to ensure that aircraft engineers appreciate the importance of standardised procedures, a meticulous approach to the job, and the consequences of error, it should not perhaps be regarded as surprising that experience and familiarity tend to dull the engineer's conscious appreciation of the critical nature of his task. It seems that the system operated at Birmingham relied entirely on the "professionalism" of individual shift supervisors to ensure that working practices were appropriate. Whereas it is entirely right to expect a professional approach from such individuals, the wisdom of leaving the safety of aircraft entirely to individual judgement without having any systems for maintaining consistency or for checking that high standards are maintained must be questionable.

Design Safety

It is obviously highly undesirable that this windscreen assembly should have been designed such that it could be fitted with bolts that were very similar to the correct ones, that could be inserted and engage with the anchor nuts, and yet which failed as soon as they were loaded. It is not asking too much for considerations such as this to be made during design, but the awareness that this type of problem is best obviated at the design stage was not widespread when this aircraft was conceived. It could also be argued that this windscreen should have been designed to be fitted as a plug from the inside of the aircraft - an obviously safe practice in a pressurised hull.

Poor design is further evidenced by the fact that this aircraft was already fitted with the wrong bolts (7Ds instead of 8Ds) in the old windscreen. This is probably because the No 1 and No 3 windscreen are fitted with bolts of slightly different lengths, yet only the shorter bolt is actually illustrated in the IPC. It is difficult to believe that it would not have been easily possible for these windscreens to have been designed so that they were both fitted with the same size of bolt.
When a new windscreen is fitted, it is customary for the engineer to fit new bolts only if those removed were damaged or paint clogged. The relative cost of bolts and windscreen might suggest, however, that it would not be unreasonable for new bolts to be fitted whenever a windscreen was changed. If this were so, the windscreen could be supplied as a kit with a set of correct bolts included.

It may also be observed that, once the type of bolt used on this windscreen is removed from its packet, it carries no identifier, compelling it to be identified by its physical characteristics. It is possible that if its head were stamped with such an identifier (e.g., 8D), then the Shift Maintenance Manager may have used this instead of relying on a physical comparison.